IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION FOR LETTERS PATENT

Architecture for Distributed Computing System and
Automated Design, Deployment, and Management of
Distributed Applications

Inventor(s):

Galen C. Hunt
Geoff Outhred
Bassam Tabbara

Kevin Grealish
Rob Mensching

ATTORNEY'S DOCKET NO. MS1-1776US

lee@hayes plic 509-324-9256 1 MS1-1776US

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No.

60/452,736, filed March 6, 2003, entitled “ARCHITECTURE FOR DISTRIBUTED COMPUTING

SYSTEM AND AUTOMATED DESIGN, DEPLOYMENT, AND MANAGEMENT OF DISTRIBUTED

APPLICATIONS”, which is hereby incorporated by reference.

[0002] This patent application is related to the following US patent applications (all of

which are incorporated by reference):

e US Patent Application Serial No. 10/382,942, filed on March 6, 2003, titled
“VIRTUAL NETWORK TOPOLOGY GENERATION”.

e US Patent Application Serial No. 09/695,812, filed on October 24, 2000, titled
“SYSTEM AND METHOD FOR DISTRIBUTED MANAGEMENT OF SHARED COMPUTERS”.

e US Patent Application Serial No. 09/695,813, filed on October 24, 2000, titled
“SYSTEM AND METHOD FOR LOGICAL MODELING OF DISTRIBUTED COMPUTER
SYSTEMS”.

e US Patent Application Serial No. 09/695,820, filed on October 24, 2000, titled
“SYSTEM AND METHOD FOR RESTRICTING DATA TRANSFERS AND MANAGING
SOFTWARE COMPONENTS OF DISTRIBUTED COMPUTERS”.

e US Patent Application Serial No. 09/695,821, filed on October 24, 2000, titled
“USING PACKET FILTERS AND NETWORK VIRTUALIZATION TO RESTRICT NETWORK
COMMUNICATIONS”.

e US Patent Application Serial No. 09/696,707, filed on October 24, 2000, titled

“SYSTEM AND METHOD FOR DESIGNING A LOGICAL MODEL OF DISTRIBUTED

lee@hayes plic 509-324-9256 2 MS1-1776US

COMPUTER SYSTEM AND DEPLOYING PHYSICAL RESOURCES ACCORDING TO THE
LOGICAL MODEL”.

e US Patent Application Serial No. 09/696,752, filed on October 24, 2000, titled
“SYSTEM AND METHOD PROVIDING AUTOMATIC POLICY ENFORCEMENT IN A MULTI-

COMPUTER SERVICE APPLICATION”,

TECHNICAL FIELD

[0003] The invention relates to an architecture for a distributed computing system.

BACKGROUND

[0004] Internet usage has exploded over the past several years and continues to grow.
People have become very comfortable with many services offered on the World Wide
Web (or simply “Web”), such as electronic mail, online shopping, gathering news and
information, listening to music, viewing video clips, looking for jobs, and so forth. To
keep i)ace with the growing demand for Internet-based services, there has been
tremendous growth in the computer systems dedicated to hosting Websites, providing
backend services for those sites, and storing data associated with the sites.

[0005] One type of distributed computer system is a data center (such as an Internet data
center (IDC) or an Enterprise Data Center (EDC)), which is a specifically designed
complex that houses many computers for hosting network-based services. Data centers,
which may also go by the names of “Webfarms” or “server farms”, typically house

hundreds to thousands of computers in climate-controlled, physically secure buildings.

lee@hayes plic 509-324-9256 3 MS1-1776US

Data centers typically provide reliable Internet access, reliable power supplies, and a
secure operating environment.

[0006] Today, large data centers are complex and often called upon to host multiple
applications. For instance, some websites may operate several thousand computers, and
host many distributed applications. These distributed applications often have complex
networking requirements that require operators to physically connect computers to certain
network switches, as well as manually arrange the wiring configurations within the data
center to support ‘the complex applications. As a result, this task of building physical
network topologies to conform to the application requirements can be a cumbersome,
time consuming process that is prone to human error. Accordingly, there is a need for
improved techniques for designing and deploying distributed applications onto the

physical computing system.

SUMMARY
[0007] An architecture and methodology for designing, deploying, and managing a

distributed application onto a distributed computing system is described.

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] The same numbers are used throughout the drawings to reference like features.
Fig. 1 illustrates an example network setting.
Fig. 2 1s a block diagram illustrating an example architecture using the SDM

definition model.

lee@hayes plic ~ 509-324-9256 4 MS1-1776US

Fig.

3 illustrates an example definition structure defined in the SDM schema

design specification.

Fig.

4 illustrates an example relationship structure defined in the SDM schema

design specification.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

5 illustrates an example of mapping a Web application to a Web server host.
6 illustrates an example architecture using an SDM runtime.

7 illustrates an example layered setting.

8 illustrates an example SDM document.

9 illustrates an base definition and members.

10 illustrates an example member.

11 1llustrates example setting values and value lists.

12 illustrates an example lifecycle of an SDM application in accordance with

certain embodiments.

Fig.
Fig.

Fig.

definition.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

lee@hayes plic

13 shows an example mapping of a web application to a web server host.
14 illustrates an example built-in datatype hierarchy.

15 illustrates an example of implicit extension of an abstract object

16 illustrates an example of implicit extension of an abstract relationships.
17 illustrates an example of a change request.

18 1llustrates an example process of loading new definitions into the runtime.
19 illustrates an example of carrying out change requests.

20 illustrates examples of connected members.

21 illustrates example structures with regard to connections.

509-324-9256 5 MS1-1776US

Fig. 22 illustrates an example UML diagram that provides an overview of the
instance space.
Fig. 23 illustrates a general computer environment that can be used to implement

the techniques described herein.

DETAILED DESCRIPTION

[0009] The following disclosure describes a number of aspects pertaining to an
architecture for designing and implementing a distributed computing system with large-
scale application services. The disclosure includes discussion of a system definition
model (SDM), which is also referred to as a service definition model, and an SDM
runtime environment. The disclosure further includes design aspects such as how to
model various data center components.

[00010] As used herein, the term “wire” may also be referred to as “connections”,
“communication”, or “communication relationship”. Also, the term “system” may be
referred to as “module” and the term “resource space” may be referred to as “resources”.
Additionally, the term “application space” may also be referred to as “applications”, and
the term “instance space” may also be referred to as “instances”. F urther, the term “class”
may also be referred to as “abstract definition”, the term “port” may also be referred to as
“endpoint”, and the term “type” may also be referred to as “definition”.

[00011] Fig. 1 illustrates an example network setting 100. In setting 100, multiple
(x) computing devices 102(1), 102(2), . . ., 102(x) are coupled to a network 106. Network
106 is intended to represent any of a variety of conventional network topologies and types

(including wire and/or wireless networks), employing any of a variety of conventional

lee@hayes plic ~ 509-324-9256 6 MS1-1776US

network protocols (including public and/or proprietary protocols). Network 106 may
include, for example, a local area network (LAN), a wide area network (WAN), portions
of the Internet, and so forth. Setting 100 represents any of a wide variety of settings,
including, for example, data centers (e.g., Internet data centers (IDCs)), office or business
settings, home settings, educational or research facilities, retail or sales settings, data
storage settings, and so forth.

[00012] Computing devices 102 can be any of a variety of conventional computing
devices, including desktop PCs, workstations, mainframe computers, server computers,
Internet appliances, gaming consoles,' handheld computers, cellular telephones, personal
digital assistants (PDAs), etc. One or more of devices 102 can be the same types of
devices, or alternatively different types of devices. Additionally, even if multiple devices
are the same types of devices, the multiple devices may still be configured differently
(e.g., two devices 102 may be server computers, but may have different hardware
configurations, such as different processors, different amounts of RAM, different sizes of
hard disk drives, and so forth).

[00013] One or more computing devices 102 may also be re-configured after being
added to setting 100. For example, a particular computing device 102 may operate for a
period of time (e.g., on the order of minutes, hours, days, months, etc.) performing one
function, and then an administrator may decide that a different function is desirable (e.g.,
change from being a server computer to a workstation computer, from a web server to a
local file server, etc.).

[00014] Fig. 2 is a block diagram illustrating an example architecture 200 using the

system definition model. The SDM is designed to be used across the entire lifecycle of a

lee@hayes plic 509-324-9256 7 MS1-1776US

system. A system is a set of related software and/or hardware resources that can work
together to accomplish a common function. One example of such a system 1s an
application, which refers to a set of instructions that can be run or executed by a
computing device to perform various functionality. Examples of applications include
entertainment applications such as games, productivity applications such as word
processors, reference applications such as electronic encyclopedias, distributed
applications such as may be used for web services or financial analysis, and so forth.
Another example of such a system is an environment on which an application (or another
environment) can be deployed. An environment refers to the software and/or hardware
resources on which an application (or another environment) is deployed. Such
environments can be layered, as discussed in more detail below.

[00015] The lifecycle of a system typically includes three primary phases (also
referred to as stages): a design or development phase, followed by a deployment or
installation phase, followed by an operations or management phase. As the model applies
to all three phases of the lifecycle of a system, the model can thus be seen as an
integration point for the various phases in the lifecycle of a system, and facilitates each of
these phases. Additionally, by using the m<.)del knowledge can be transferred between
these phases, such as knowledge regarding management of the system (e.g., being fed
back to the design and development team (e.g., thereby allowing the design and
development team to modify the system, such as for future versions or to improve the
performance of the current version); knowledge of the structure, deployment

requirements and operational behavior of the system; knowledge of the operational

lee@hayes pllc ~ 509-324-9256 8 MS1-1776US

environment from the desktop to the data center; knowledge of the service level as
observed by the end user; and so forth.

[00016] Generally, during the design phase, development tools leveraging the
SDM are used to define a system comprised of communicating software and hardware
components. A system definition contains all information necessary to deploy and
operate a distributed system, including required resources, configuration, operational
features, policies, etc. During the deployment phase, the system definition is used to
automatically deploy the system and dynamically allocate and configure the software and
hardware (e.g., server, storage and networking) resources required. The same system
definition can be used for del.)loyments to different host environments and to different
scales. During the management phase, an SDM Service in the operating system provides
a system-level view for managing the system. This enables new management tools to
dnive resource allocation, configuration management, upgrades, and process automation
from the perspective of a system.

[00017] The architecture 200 employs the SDM definition model as well as a
schema that defines functional operations within the SDM definition model. The
definition model includes various different kinds of data structures which are collectively
referred to as “definitions”. Functionality of the SDM is exposed through one or more
platform services, such as application program interfaces (APIs).

[00018] During the design phase for a system, a development system 202 generates
a document that contains the system definition, such as an SDM document 204.
Development system 202 can be any of a variety of development systems, such as the

Visual Studio® development system available from Microsofit® Corporation of

lee@hayes plic ~ 509-324-9256 9 MS1-1776US

Redmond, Washington. SDM document 204 defines all information (also referred to
herein as knowledge) related to the deployment and management of the system. Any
knowledge necessary for or used when deploying the system or managing the system is
included in SDM document 204. Although described herein as a single document, it is to
be appreciated that the knowledge could alternatively be spread out and maintained in
multiple documents.

[00019] SDM document 204 includes one or more constraints (also referred to as
requirements) of the system that an environment in which the system is to be deployed
and/or run must satisfy. The environment itself is also described using an SDM
document. Such environments can be single computing devices, or alternatively
collections of computing devices (e.g., data centers), application hosts, etc. Different
systems can be installed to different environments. For example, a data center may
include fifty computing devices, and one system may be deployed to five of those
computing devices, while another system may be deployed to thirty five of those
computing devices. These requirements can take a variety of forms, such as: hardware
requirements regarding the computing device(s) on which the system is to be deployed
(e.g., a minimum processor speed, a minimum amount of memory, a minimum amount of
free hard drive space, a minimum amount of network bandwidth available, particular
security mechanisms available, and so forth), software requirements regarding the
computing device(s) on which the system is to be deployed (e.g., a particular operating
system, one or more other applications that also must be installed, specifications
regarding how a particular system and/or the operating system is to be configured, a

particular type of security or encryption in use, and so forth), other requirements

lee@hayes plic ~ 509-324-9256 10 MS1-1776US

regarding the computing device(s) on which the system is to be deployed (e.g., particular
security keys available, data center policies that must be enforced, authentication that is
used, environment topology, etc.).

[00020] Requirements can also go in the other direction — that is, the environment
can have constraints or requirements on the configuration of the system that is to be
installed (e.g., to implement the standards or policies of the environment). These can be
“explicit” requirements that are created by the operator of the environment, such as
particular settings or configurations the system must have, particular functionality the
system must provide or support, particular. security mechanisms the system must support,
and so forth. These can also be “implicit” requirements that that arise because of a
particular configuration of the environment. For example, if a host computing ‘device in
the environment is using a particular type of file system then it may not be possible for
some actions to be performed using that file system (although it may be possible for those
same actions to be performed using another file system).

[00021] During the design and development phase of the system, SDM document
204 can be used to validate the system for one or more particular environment(s). This is
a two-way validation: the system is validated for the environment and the environment is
validated for the syétem. The environment can be validated for the system by comparing
the requirements identified in the SDM document 204 with the environment and
determining whether all of the requirements are satisfied by the environment. The system
can be validated for the environment by comparing the requirements identified in an
SDM document for the environment with the system and determining whether all of the

requirements are satisfied by the system. If all of the requirements are satisfied by the

lee@hayes plic ~ 509-324-9256 11 MS1-1776US

environment and the system, then the designer or developer knows that the system can be
deployed in and will run in the environment. However, if all of the requirements are not
satisfied by the environment and/or the system, then the designer or developer is
optionally informed of the requirements that were not satisfied, thereby informing the
designer or developer of what changes should be made to the SDM document 204 (and
correspondingly to the system) and/or to the environment in order for the system to be
deployed and run in that environment.

[00022] The knowledge regarding deployment of the system that is included in the
SDM document 204 describes how the system is to be deployed in one or more
environments. The SDM document 204 is made available to a controller 206, which
includes a deployment module 208 and a management module 210. In certain
embodiments, the SDM document 204 as well as all of the files of the system (e.g.,
binaries, data, libraries, etc.) needed to install the system are packaged together into a
single container (e.g., a single file) referred to as an SDU (System Definition Unit).
Controller 206 can be one or more of computing devices 102 of Fig. 1. For example, a
single device 102 of Fig. 1 may be the controller for a particular data center, or
alternatively the controller responsibilities may be distributed across multiple devices
102.

[00023] Deployment module 208 includes services that are used to deploy the
system in the environment(s). In Fig. 2, the environment in which the system is deployed
(or is deployed on) is one or more target devices 212. Systems may also be deployed to
controller 206. These services of deployment module 208 include one or more functions

that can be called or invoked to install or deploy one or more systems in the environment.

lee@hayes plic 509-324-9256 12 MS1-1776US

[00024] Different knowledge for deployment in different environments may be
included in the SDM document 204. This deployment knowledge describes any changes
that need to be made to the environment (e-g., changes to a system registry; folders,
directories, or files that need to be created; other setting or configuration parameters of
the computing device that need to be set to particular values; and so forth), as well as
what files (e.g., program and/or data files) that need to be copied to the computing
device(s) in the environment and any operations that need to be performed on those files
(e.g., some files may need tov.be decompressed and/or decrypted). In many
implementations, the deployment knowledge in the SDM document 204 includes, for
example, information analogous to that presently found in typical setup or installation
programs for systems.

[00025] During the deployment process, controller 206 generates a record or store
of the software and hardware .resources involved in the deployment as well as the
relationships between them. This record or store can subsequently be used by controller
206 during the management phase.

[00026] Management module 210 includes services that are used to manage the
system once it is installed in the environment(s). These services of management module
210 include one or more functions that can be called or invoked to manage the systems in
the environment. The knowledge regarding management of the system that is included in
the SDM document 204 describes how the system is to be managed in one or more
environments.

[00027] Different knowledge for managing a system in different environments may

be included in the SDM document 204. The management knowledge includes any

lee@hayes plic 509-324-9256 13 MS1-1776US

knowledge used in the management or operation of the system. Management involves,
for example, configuration (and optionally subsequent reconfiguration), patching and
upgrading, maintenance tasks (e.g., backup), health or performance monitoring, and so
forth.

[00028] Changes to deployed systems are made through management module 210.
The services of management module 210 include one or more functions that can be called
or invoked to make changes to one or more systems deployed in the environment. By
making such changes through the management module 210, several benefits can be
realized. One such benefit is that controller 206 can maintain a record of the changes that
have been made. Controller 206 may maintain a copy of the SDM document 204 for the
system and record in the SDM document 204 any changes that are made to the system.
Alternatively, controller 206 may maintain a separate record of the changes made to the
system.

[00029] This record of changes maintained by controller 206 can simplify
subsequent operations, such as solving problems with the system and/or environment, or
when having to reinstall the system due to a hardware failure (allowing the system to be
reinstalled and returned to running with the same parameters/settings as it had at the time
of failure). By having such changes made through controller 206 and by having
controller 206 maintain the record, some human error can be removed from the
environment (e.g., if the administrator making the change is supposed to log the change in
a book but forgets to do so there would be no record of the change — this problem is

solved by having controller 206 maintain the record).

lee@hayes plic 509-324.9256 14 MS1-1776US

[00030] Furthermore, by making changes to systems through controller 206, as
well as deploying systems through controller 206, controller 206 can serve as the
repository of knowledge about the environment, the systems deployed in the environment,
and interactions between them. Knowledge regarding the environment and/or systems
deployed in the environment can be readily obtained from controller 206. This
knowledge can be used to ensure the consistency of the controlled environment by
validating that the controlled devices in the environment reflect the state stored in the
central controller 206.

[00031] It should be noted that in some situations changes may be made to a
system and/or environment but are not made through controller 206. For example, a
computing device may be accidentally turned off or may fail. In these situations, attempts
are made to reflect such changes in controller 206. These changes may be reflected in
controller 206 automatically (e.g., a system may run that attempts to detect device failures
and use the services of management module 210 to notify controller 206 of such failures)
or may be reflected in controller 206 manually (e.g., an administrator may use the
services of management module 210 to notify controller 206 of such changes).
Alternatively, the changes that were made could be reversed to bring the system and/or
portion of the environment back into line with the desired state of the system as recorded
by controller 206.

[00032] The SDM document 204 can thus be viewed as a “live” document — it can
be constantly changing based on changes to the environment and/or changes to the system

throughout the lifecycle of the system.

lee@hayes plic 509-324-9256 15 MS1-1776US

[00033] System Definition Model (SDM)

The system definition model (SDM) is a modeling technology used to create
definitions of systems. A system is a set of related software and/or hardware resources
that work together to accomplish a common function. Example systems include multi-
tier line-of-business applications, Web services, e-commerce sites, and enterprise data
centers. The SDM provides tools and a context for an application architect, network
architect, datacenter architect, or other developer to design distributed computer
applications and data centers in an abstract manner. The SDM defines a set of elements
that represent functional units of the systems that will eventually be implemented by
physical computer resources and software. The SDM also defines elements that are
relevant to operators or other individuals that will manage a system. Additionally, the
SDM captures data pertinent to development, deployment, and operations. Associated
with the SDM elements is a schema that dictates how functional operations represented
by the components are to be specified.

[00034] A system is composed of resources, endpoints, relationships and sub-
systems. Definitions of each of these items are declared in an SDM document. An SDM
document is an XML document that contains one or more definitions of systems,
resources, endpoints and relationships. Resources may be hardware resources or software
resources. Endpoints represent communications across systems. Relationships define
associations between systems, resources and endpoints. Sub-systems can be treated as
complete systems and are typically part of a larger system.

[00035] A system definition captures the basic structure of a dynamic system. It

can be viewed as the skeleton on which all other information is added. This structure is

lee@hayes plic 5093249256 16 MS1-1776US

typically specified during the development process, by architects and developers, and
typically does not change frequently. In addition to the structure, the SDM can contain
deployment information, installation processes, schemas for configuration, events and
instrumentation, automation tasks, health models, operational policies, etc. Other
information can be added by the operations staff, by vendors, and/or by management

systems across the lifetime of a distributed system.

[00036] SDM Schema Design Specification

The SDM is designed to support description of the configuration, interaction and
changes to the components in a distributed system (e.g., the modeled system).
“Definitions” describe entities that exist in a system and “relationships” identify the links
between the various entities. Definitions and relationships are further defined to capture
semantic information relevant to the SDM. As shown in Fig. 3, an SDM definition 302
includes three sub-definitions: a resource definition 304, a component definition 306,
and an endpoint definition 308.

[00037] As shown in Fig. 4, an SDM relationship 402 includes five sub-
relationships: a containment relationship 404, a delegation relationship 406, a
connections relationship 408, a hosting relationship 410, and a reference relationship 412.
The connections relationship 408 may also be referred to as a ‘“communication
relationship”. Further details regarding definitions and relationships are provided below.

[00038] The SDM includes “abstract definitions” that provide a common
categorization of system parts, provide tool support for a wide range of applications and

provide the basis for definition checking at design time. A set of abstract definitions

lee@hayes plic ~ 509-324-9256 17 MS1-1776US

provide a comprehensive basis for service design. “Concrete definitions” represent parts
of an actual application or data center design. A concrete definition is generated by
selecting an abstract definition and providing an implementation that defines the concrete
definition’s members and setting values for its properties. Distributed applications are
generated using collections of these concrete definitions.

[00039] The SDM also includes “constraints” that model restrictions based on the
allowed set of relationships in which an instance of a relationship can participate.
Constraints are useful in describing requirements that depend on the configuration of
objects involved in a relationship. For example, a constraint may be used to determine
whether participants on each end of a communication protocol are using compatible
security settings.

[00040] A flow can be identified as part of a definition and/or a resource. This
flow is used to control application behavior at runtime by propagating operator settings to

the systems, sub-systems, or other components that utilize such settings.

[00041] Abstract Definitions and Relationships

Abstract definitions define the building blocks that check application
configuration at design time and then deploy and manage an application at run time.
These building blocks represent entities that exist in the modeled system. For example,
abstract definitions can model files and directories, the configuration inside a web server,
or the databases inside a SQL server.

[00042] Abstract relationships model the interactions that can occur between

abstract definitions. Relationships are binary and directed, identifying the definitions of

lee@hayes plic ~ 509-324-9256 18 MS1-1776US

the instances that participate in manifestations of the relationship. Relationships provide
a way of associating entities with one another, thereby allowing the modeling of
containment, construction and communication links between entities.

[00043] Constraints are used by definitions to constrain the relationships in which
they participate. Constraints are further used by relationships to constrain the definitions
that can be linked. These constraints can target the definition and settings of participants
in a relationship.

[00044] The abstract definition space is divided into three categories: components,
endpoints and resources. Abstract component definitions describe self-contained
independently deployable parts of an application. These definitions represent parts of an
application that interact through well-defined communication channels that can cross
process and machine boundaries. Abstract endpoint definitions describe the
communication endpoints that a component may expose. These abstract endpoint
definitions can model all forms of communication that the system is aware of to verify
system connectivity at design time and to enable connections at runtime. Abstract
resource definitions describe behavior that is contained within a component. Resource
definitions may have strong dependencies on other resource definitions. These
dependencies can include requiring a specific installation order and initiating runtime
interaction through various communication mechanisms.

[00045] Abstract definitions include the ability to expose settings. In one
embodiment, these settings are name-value pairs that use an XML schema to define the
definition of the setting. Settings can be dynamic or static. Static settings are set during

the deployment process. Dynamic settings can be changed after deployment. The code

lee@hayes plic 509-324-9256 19 MS1-1776US

responsible for applying settings values to the running system is hosted in the SDM
runtime.

[00046] The SDM model supports inheritance over abstract definitions. A derived
definition can extend the properties exposed by its parent and can set values for its
parent’s properties. A derived definition can participate in the relationships that identify
its parent as a participant.

[00047) As mentioned above, relationships are divided in five categories:
communication (or connections), containment, delegation, hosting and reference.
Communication relationships capture potential communication interactions between
abstract endpoint definitions. The existence of a communication relationship indicates
that it may be possible for components that expose endpoints of the identified definition
to communicate. The actual establishment of the link is subject to constraints on the
endpoints and the exposure of the endpoints.

[00048] Containment relationships describe the ability of an abstract definition to
contain members of other abstract definitions. More specifically, a containment
relationship between two abstract definitions A and B allows a concrete definition that
implements A to contain a member of a definition that implements B. Containment
relationships model the natural nesting structures that occur when developers build
applications. By containing a member of another definition, the parent is able to control
the lifetime and visibility of the contained definition. All definition instances in the run
time space exist as members of other definition instances, forming a completely
connected set of instances. Thus, the set of containment relationships describes the

allowed containment patterns that occur in the runtime space.

lee@hayes plic 509-324-9256 20 MS1-1776US

[00049] Delegation relationships selectively expose contained members. For
example, delegation can expose endpoint members from component definitions. By
delegating an endpoint from an inner component, the outer component exposes the ability
to communicate using a particular protocol without exposing the implementation behind
the protocol.

[00050] Hosting and reference relationships represent two forms of dependency
relationships. A hosting relationship is used to capture knowledge regarding how to
create an instance of a definition on a particular host. The hosting relationship allows the
developer to create their own definition in a manner that is independent from the
operation of a specific host. This relationship also allows a single definition to be
deployed on multiple host types without rewriting the guest definition. The hosting
relationship describes a primary dependency between abstract definitions that exists
before an instance of a concrete definition is created. Each instance participates as a
guest. in a hosting relationship, thereby causing the hosting relationships to form a
connected tree over the instance space. Reference relationships capture additional

dependencies used for parameter flow and for construction ordering.

[00051] Concrete Definitions and Relationships

Concrete definitions are created from abstract definitions. Concrete relationships
are created from abstract relationships. The combination of abstract definitions and
abstract relationships defines a schema for modeling the target system. A concrete
definition uses a subset of the abstract definition space to create a reusable configuration

of one or more abstract definitions. The abstract definition space can be compared to the

lee@hayes plic 509-324-9256 21 MS1-1776US

schema for a database. In this analogy, the concrete definition space represents a reusable
template for a set of rows in the database. The concrete definition is validated against the
abstract definition space in the same way that the rows in the database are validated
against the constraints of the schema, such as foreign keys, etc. A developer can infer
knowledge of the concrete definition from knowledge of the abstract definition. Thus,
tools associated with the abstract definition can operate with many implementations that
are derived from that abstract definition. For example, a tool that knows about abstract
Web services can operate with any Web service deployed into a datacenter without
requiring additional information from the developer.

[00052] Each concrete definition provides an implementation for a specific abstract
definition that includes extensions to the settings schema, values for settings, declarations
for definition and relationship members, and constraints on the relationships in which the
definition can participate. The behavior of the concrete definition follows the definition
of the abstract definition. In particular, abstract component definitions become
component definitions, abstract endpoint definitions become endpoint definitions and
abstract resource definitions become resource definitions.

[00053] Each concrete relationship provides an implementation for a specific
abstract relationship that includes a settings schema and settings values, nested members
of the same relationship category (e.g., hosting, containment, or communication), and
constraints on the definitions that can participate in the relationship.

[00054] Concrete hosting relationships define a set of hosting relationships that can
map the members of one concrete definition onto another concrete definition. For

example, a concrete hosting relationship can identify the bindings between a web

lee@hayes plic 509-324+9256 22 MS1-1776US

application and the IIS host to which it will be deployed. More than one hosting
relationship can exist for a particular definition, thereby allowing the developer to define
deployments for specific topologies.

[00055] A concrete definition can declare members of other concrete or abstract
definitions — referred to as “definition members”. These definition members are then
referenced from “relationship members” that define the relationships between the
definition members. Definition members include references to instances of a particular
definition. Settings flow can provide values for the definition or can constrain the
construction parameters used when creating the definition. When declaring a definition
member, the user (e.g., developer) can decide whether the definition member is created at
the same time the outer component is created (referred to as “value semantics”) or
whether the definition member is created by an explicit new operation that occurs at a
later time (referred to as “reference semantics”).

[00056] Relationship members define the relationships that definition members
will participate in when they are created. If a definition member is contained in the
concrete definition, then a containment relationship member is declared between the
definition member and this reference for the outer definition. If the definition member is
delegated, then a delegation relationship member would be defined between the definition
member and a nested definition member. Communication relationship members can be
declared between endpoints on definition members and dependency relationship members
(reference and hosting) can be declared between definition members or nested definition

members.

lee@hayes pllc ~ 509-324-9256 23 MS1-1776US

[00057] Relationship constraints narrow the set of relationships in which a
particular definition is willing to participate. Relationship constraints identify constraints

on a particular relationship and on the participants at the other end of the relationship.

[00058] Instance Space

The instance space stored in the SDM runtime identifies the current state of the
modeled system. The SDM runtime contains a record of the instances that have been
created and the relationships between those instances. Each instance has an associated
version history that links each version to a change request. A change request is the
process that creates a new instance. The change request defines a set of create, update
and delete requests for definitions and relationships associated with specific members of
an existing instance. The root is handled as a special case.

[00059] The change request is expanded by the runtime, verified against one or
more constraints, and then constructed. The expansion process identifies definition and
relationship instances that are constructed implicitly as part of the construction request of
the containing definition. As part of the expansion process, the settings flow is evaluated
across all relationships. The verification step checks that all required relationships exist
and that the relationships fulfill the necessary constraints. Finally, the construction
process determines an appropriate ordering over the deployment, update, or removal of
each instance. The construction process then, in the correct sequence, passes each
instance to an instance manager to perform the appropriate action.

[00060] Data centers can be created using multiple software components. One or

more connections are configured between the multiple software components. Some of

lee@hayes pllc ~ 509+324-9256 24 MS1-1776US

these software components may function as hosts for the application layer. Example
component definitions in the host layer include IS, SQL, AD, EXCHANGE, DNS and
Biztalk.

[00061] The network/OS/storage layer supports the construction of data center
networks and platforms. This layer also supports the configuration of a network security
model, configuration of the operating system platform and association of one or more
storage devices with the operating system platform. Example component definitions in
the network/OS/storage layer include VLAN, Windows, Filter and Storage.

[00062] The hardware layer identifies the definitions of systems that exist in the
data center and the physical connections that exist between those systems. To satisfy the
relationships needed by a particular component, that component is bound to a host
component that has matching capabilities. This process is referred to as “logical
placement”. At deployment time, instances of the guest component are positioned on
instances of the host component. This process is referred to as “physical placement”.
[00063] Fig. 5 illustrates an example of mapping a Web application 502 to a Web
server host 504. A boundary identified by broken line 506 separates an application layer
from a host layer. Web application 502, contains remoting service endpoints 508, Web
service endpoints 510 and Web user interface endpoints 512, all of which map to a Web
site 522 in Web server 504. Additionally, a virtual directory 516 in Web application 502
maps to Web site 522. Web application 502 also includes a consumer endpoint 514 that
maps to a consumer endpoint 524 in Web server 504. An assembly portion 518 of Web
application 502 maps to a runtime portion 528 of Web server 504. A content directory

520 in Web application 502 maps to a Web root directory 526 in Web server 504.

lee@hayes plic 509-324-9256 25 MS1-1776US

[00064] A process for managing changes to a distributed system is associated with
the SDM model. Changes to the distributed system are driven by a change request that
passes through one or more processing steps before the actions in the request are
distributed and executed against target systems.

[00065] Fig. 6 illustrates an example architecture 600 using an SDM runtime.
Architecture 600 is an example of architecture 200 of Fig. 2 using an SDM runtime 610
as well as the example implementation of the SDM discussed below in the section
“Example Implementation”. The SDM runtime 610 contains a set of components and
processes for accepting and validating SDM files, loading -SDUs (System Definition
Units — which are packages of one or more SDM files and their related files), creating and
executing SDM Change Requests and deploying SDM based systems into target
environments. The runtime functionality allows systems described using the SDM to be
defined and validated, deployed to a set of computing devices, and managed.

[00066] The following is a brief, functional discussion of how the components in
Fig. 6 work together. An operator or administrator is able to describe an environment into
which applications can be deployed, such as the topology of a data center. The operator
or administrator produces an SDM file describing the environment, the file being referred
to as the “logical infrastructure” (LIM) 602, or as a data center description or data center
model. This SDM file can be generated using any of a variety of development systems,
such as the Visual Studio® development system available from Microsoft® Corporation
of Redmond, Washington.

[00067] Additionally, an application developer is able to design and develop their

application using any of a variety of development systems, such as the Visual Studio®

lee@hayes pllc ~ 509+324-9256 26 MS1-1776US

development system. As the developer defines components of the application and how
these components relate to one another, the developer is able to validate the application
description against the datacenter description 602. This is also referred to as “Design
Time Validation”.

[00068] Once the application is complete, the developer saves the description in an
SDM and requests that the application be packaged for deployment as an SDU 604. The
SDU includes the application SDM as well as the application binaries and other
referenced files used to install the application.

[00069] The LIM 602 and SDU 604 are fed to deployment tool 606 of a controller
device 620 for deployment. Deployment tool 606 includes a user interface (UI) to enable
an operator to load the desired SDU 604. Deployment tool 606 works with create CR
module 630 to install the application associated with the SDU 604 in accordance with the
information in the SDM within SDU 604. Additionally, SDM definitions and instances
from SDU 604 are populated in a store 608 of the SDM runtime 610. SDUs are managed
in SDM runtime 610 by SDU management module 640, which makes the appropriate
portions of the SDUs available to other components of runtime 610 and target(s) 622.
[00070] The operator can also specify what actions he or she wants to take on the
targets 622 (e.g., target computing devices) on which the application is being deployed.
The operator can do this via a deployment file, which is also referred to herein as a
Change Request (CR). The CR is run through one or more engines 612, 614, 616, and
618. Generally, expand CR engine 612 expands the CR to identify all associated
components as well as their connections and actions, flow values engine 614 flows values

for the components (such as connection strings), check constraints engine 616 checks

lee@hayes plic 509+324-9256 27 MS1-1776US

constraints between the environment and the application, and order actions engine 618
specifies the order for all of the necessary actions for the CR.

[00071] To initiate change to the system (including deploying an application) or
validation of a model, an operator or process submits a CR. The CR contains a set of
actions that the operator wants performed over the instances in the runtime 610. These
actions can be, for example, create actions, update actions, and/or delete actions.

[00072] In addition to user or operator initiated change requests, there may also be
expansion/automatically generated change requests that are generated as part of the
expansion process, discussed in more detail below. Regardless of their source, the change
requests, once fully expanded and checked, are executed by sending actions to the targets
622, such as: discover, install, uninstall and change a target instance.

[00073] The CR is treated as an atomic set of actions that complete or fail as a
group. This allows, for example, the constraint checking engine 616 to consider all
actions when testing validity.

[00074] In design time validation, the CR will be created by the SDM Compiler
628 and will contain one or the minimum of each SDM component in the SDM file. This
CR of create instance commands will flow through the expansion engine 612, the flow
values engine 614, and the constraint checking engine 616. Errors found in these three
phases will be returned to the user via the development system he or she is using.

[00075] In deployment, the operator will create a CR with the Ul presented by
deployment tool 606. The CR will flow through all the engines 612, 614, 616, and 618 in
the SDM runtime 610, and the appropriate actions and information will be sent by CR

module 632 to the appropriate target(s) 622, where the request is executed (e.g., the

lee@hayes plic ~ 509-324-9256 28 MS1-1776US

application is installed). The appropriate target(s) 622 for a particular installation are
typically those target(s) on which the application is to be installed.

[00076] When beginning to process a CR, in a definition resolution phase, create
CR module 630 resolves all definitions and members that are referenced in the change
request. The change request will assume that these are already loaded by the runtime 610;
create CR module 630 initiates a load/compile action if they do not exist. Create CR
module 630 also implements a path resolution phase where references to existing
instances and instances defined by create actions within the change request are resolved.
[00077] The expansion performed by expansion engine 612 is a process where,
given a change request, all the remaining actions required to execute the request are
populated. In general, these actions are construction and destruction actions for definition
and relationship instances. The operator could optionally provide details for all the
actions required to construct or destroy an instance, or alternatively portions of the
process can be automated: e.g., the operator provides key information about the changes
he or she wants by identifying actions on members (e.g., byReference members), and the
remainder of the actions are filled in on nested members (e.g., byReference and byValue
members) and relationships. By way of another example, automated expansion can also
refer to external resource managers that may make deployment decisions based on
choosing devices with available resources, locating the application close to the data it
requires, and so forth.

[00078] Expansion engine 612 also performs “auto writing”. During auto writing,

engine 612 analyzes the scale invariant grouping of components and compound

lee@hayes plic 509-324-9256 29 MS1-1776US

components specified in the SDM and determines how the components should be
grouped and interconnected when scaled to the requested level.

[00079] Expansion engine 612 also performs value member expansion, reference
member expansion (discovery), and relationship expansion.

[00080] Value member expansion refers to identification of all of the non-reference
definition members. The cardinality of these members are noted and, since all the
required parameters are known, for each member create requests are added to the change
request for those members whose parent is being created. If the change request contains
destruction operations, then destruction operations are added for all their contained.-
instances.

[00081] - Reference member expansion refers to reference members (as opposed to
non-reference. definition members). The cardinality of reference members is often
undefined and they can have deployment time settings that require values in order for the
instance to be constructed. So the process of expanding a reference member (e.g., a
byReference member) can require more information about the instance than the runtime is
in a position to provide.

[00082] Related to reference member expansion is a process referred to as
discovery, which is a process used to find instances that have already been deployed.
Discovery is an action typically initiated by an operator of the environment. For example,
during an install request, expansion engine 612 determines if the instance already exists,
if so determines what exists and if not then creates it. An instance manager (IM) 634 on

the controller 620 communicates with the instance managers 626 on the target device 622

lee@hayes plic ~ 509-324-9256 30 MS1-1776US

to initiate a discovery process. The discovery process returns data regarding the instance
from the target device 622 to the controller 620.

[00083] The process of discovery populates reference definition members as part of
a construction or update action. Typically, only reference members with object managers
(instance managers that also do discovery) that support discovery participate in this
process. |

[00084] When a new instance is discovered a check is made that the instance does
not already exist in the SDM database using instance specific key values. Once it is
known that it is a new instance, the instance is classified according to the definitions of
the members being discovered. If the instance does not match a member or there is an
ambiguous match then the member reference is left blank and the instance is marked as
offline and incomplete.

[00085] Relationship expansion refers to, once all the definition instances that will
be constructed are known, creating relationship instances that bind the definition
instances together. If definition instances are being destroyed, all relationship instances
that reference the definition instances are removed.

[00086] To create the relationships the member space is used to identify the
configurations of the relationships that should exist between the instances. Where the
definition members have cardinality greater than one the topology of the relationships is
inferred from the base relationship definition. For example, for communication
relationship an “auto wiring” can be done, and for host relationships a host is picked

based on the algorithm associated with the hosting relationship.

lee@hayes pllc ~ 509-324-9256 31 MS1-1776US

[00087] During a flow stage, flow values engine 614 evaluates flow across all the
relationship instances. Flow values engine 614 may add update requests to the change
request for instances that were affected by any altered parameter flow. Engine 614
evaluates flow by determining the set of instances that have updated settings as a result of
the change request. For each of these, any outgoing settings flows that depend on the
modified settings are evaluated and the target nodes added to the set of changed instances.
The process continues until the set is empty or the set contains a cycle.

[00088] After the flow statd, a process of duplicate detection is performed. The
duplicate detection r.nay be performed by one of the engines illustrated in Fig. 6 (e.g.,
flow values engine 614 or check constraints engine 516), or alternatively by another
engine not shown in Fig. 6 (e.g., a duplicate detection engine may be included in SDM
runtime 610). The process of duplicate detection matches expanded instances against
instances that already exist in the SDM data store. For example, the process detects if
another application has installed a shared file. When an instance that already exists is
detected, one of several actions can be taken depending on the version of the existing
instance: the install can be failed; the instance can be reference counted; the instance can
be upgraded; or the installation can be performed side-by-side.

[00089] Check constraints engine 616 implements a constraint evaluation phase in
which all the constraints in the model are checked to see if they will still be valid after the
change request has been processed.

[00090] After check constraints engine 616 finishes the constraint evaluation

phase, a complete list of actions is available. So, order actions engine 618 can use the

lee@hayes plic 509-324+9256 32 MS1-1776US

relationships between components to determine a valid change ordering. Any of a variety
of algorithms can be used to make this determination.

[00091] Once order actions engine 618 is finished determining the ordering,
deployment can be carried out by distributing subsets of the ordered set of actions that are
machine specific. Once the actions have been ordered and grouped by machine, the
actions as well as a copy of the necessary portion of the SDM runtime store 608 with
instance information are sent to a target computing device 622. The SDM can be stored
temporarily at the target device in a store cache 638.~

[00092] . The target computing device includes a target portion 636 of the SDM
runtime that communicates with SDM runtime 610. The target computing device 622
also includes an agent that contains an execution engine 624 and can communicate with
the appropriate instance managers (IMs) 626 on the target device to make changes on the
target, such as crate, update, and delete actions. Each action is sent as an atomic call. to
the instance manager 626 and the instance manager 626 returns a status message and for
some actions, also returns data (e.g., for discovery). Once all the actions are completed
on target 622, the target’s agent returns any errors and status to the controller 620. The
controller 610 then uses this information to update the SDM runtime store 608.

[00093] As discussed above, change is carried out by breaking the change requests
down into distributable parts based on the relationships that are affected. Once all the
parts are completed (or after one or more has failed) the results are collated in the runtime
610 and a summary returned to the operator. In the event of a failure, all the actions can
be “rolled back™ and the system returned to the state it was in before the change was

Initiated.

lee@hayes plic ~ 509-324-9256 33 MS1-1776US

[00094] In certain embodiments, during design time validation discussed above, an

SDM Compiler 628 receives an SDM file, creates a test CR, runs the test CR through the

expand, flow values and check constraints engines of the SDM runtime, and returns any

errors to the development system. This process provides SDM validation for deployment

during design time for the developer.

[00095] The public interface to SDM runtime 610 and/or controller 620 is through

an object model (APIs) library. The library is a managed code object model and allows

the following to be performed:

Manage the SDMs in the runtime - SDM files can be loaded into the runtime. SDMs
are immutable and are loaded one at a time (i.e., an SDM file can be loaded rather
than only parts of the file (e.g., individual ones of the individual definitions, classes or
mappings from the SDM file)). SDMs can be deleted from the runtime and an XML
document for an SDM in the runtime can be produced.

Manage the SDUs known by the runtime.

Manage SDM definitions - find and reflect on SDM elements (from an SDM loaded
in the runtime). There is no public API provided for authoring a new SDM (i.e., this
is a read only object model over the immutable elements of the SDM). This includes
SDMs, SDUs, identities, versions, classes, definitions, binding/mappings and
versioning policy.

Manage SDM instances - find and reflect on instances of components, endpoints,
resources and relationships. In the instance space each instance can be identified by a

GUID, a stable path or an array based path. The paths are strings and can be relative.

lee@hayes pllc 509-324-9256 34 MS1-1776US

These 1dentifiers, including relative paths allows instances to be found and referenced
in documents such as the change request document.

e Manipulate instances — make changes to SDM instances, including creating, changing
topology, upgrading, changing settings and deleting. Instance changes are made
within the bounds of a change request which provides an atomic unit of update so that
any errors or constraint violations will result in the entire request failing. Instance
requests also allow for instances to exist temporarily without a binding to a host, as an
instance must have a host when the request is committed. It also allows for many
operations that will affect a single component’s installation or settings to be
performed and have the installation or settings update deferred until commit so that a
single update occurs on the component. The SDM model checking is performed prior
to or at change request commit time and the commit will fail on any model or
constraint violations.

® Load a change request - a change request is a document, for example an XML file,
that represents a set of instance space operations. This document can take advantage
of relative paths to be a reusable ‘script’ for creating or deleting application instances.

e Find and reflect on change requests - including getting the installation/update tasks
and all error information, and retrying the installation/update of components aﬁ"ected
by the request.

e Generate a change request document from a change request in the database. Such

documents are somewhat portable.

lee@hayes plic ~ 509-324-9256 35 MS1-1776US

e Subscribe to events on change request tasks, such as progress, log or status updated.
The lifetime of these event subscriptions limited by the lifetime of the process that

loaded the client library (i.e. these are regular CLR events).

[00096] The SDM runtime engine performs the reasoning on the SDM model and
the functions surfaced by the APIs. The library communicates to the runtime engine as a
web service with fairly coarse calls such as load SDM, create component instance and get
entire SDM (for reflecting on SDM entities). The format of many of the parameters for
this web service is XML with the same schema for SDM files. The engine may also
perform checks on permissions.
[00097] The controller 620 can make use of Instance Managers (IMs), which can
be associated with any definition or relationship in the model. IMs may perform one or
more of the following roles:

¢ Support deployment of the instance.

e Support validation of the instance once it has been deployed (auditing).

e Support discovery of already deployed instances that were not deployed

through the runtime.

¢ Support flow of setting values.

e Support evaluation of constraints.

e Support expansion of a change request.

o Support presentation of the instance to a user as a CLR class through the APL.
[00098] For deployment, an instance manager (IM) plug-in on controller 620 is
associated with a class host relation and is separate from the plug-in used in the

development system that provides the design experience for the classes and produces the

lee@hayes plic 509-324-9256 36 MS1-1776US

associated binaries in the SDU 604 and the settings schema. Instance managers are

supplied to the SDM runtime 610 as CLR classes (e.g., in a dll assembly) that implement

an instance manager interface or inherit from abstract class. An SDM Instance Manager,
also referred to as an Instance Manager (IM) plug-in, provides the following functions to

the controller 620:

* Generates the files and commands (tasks) to install, uninstall or reinstall component
instances on their hosts - When a change request results in a new component instance,
removal of a component instance or a change to a component that requires an
uninstall and reinstall, it is the instance manager that takes the settings for the
instance, the host instance, the definitions associated with the component and the
binaries associated with those definitions in the SDU 604 and produces the files and
commands needed to perform the install or uninstall on a target server ready for either
manual execution or dispatch via the deployment engine.

o Generates the files and commands (e.g., tasks) to update a component instance when
its settings change or when the view from one of its endpoints changes (e.g., due to
communication relationship topology changes or a visible endpoint has settings
changed)

® Maps the endpoint instances visible on a component instance’s endpoints to settings
on component instance - In the SDM a component instance has endpoint instances
that, as a result of some communication relationship topology, can see other endpoint
instances. The details of the other endpoint instances are mapped to settings that the
component instance can fetch at runtime, usually so that it can bind to it. For
example, a web site may have a database client endpoint instance so a communication

relationship can be established with a database. When correctly established its

lee@hayes plic 509-324-9256 37 MS1-1776US

database client endpoint is able to see a single database server endpoint instance and
the settings on that server endpoint. This information is used by the instance manager
to place a connection string for the server in a configuration file under the name of the
client endpoint. The end resuit is that code simply reads the connection string for the
database from its configuration settings.

* Generates the files and commands (tasks) to audit a component instance - Auditing
confirms existence, correct settings. This may apply to host instance settings also.

e For any task will report status — The IM will translate the output captured, either
-partial or complete, and provide the status of the task as success, failure or incomplete
and optionally offer progress on incomplete (% or last response), details on failure
(error message) and a human readable log on any status. By going back to the
instance manager to interpret the output of a task, the instance manager is free to have
its tasks log structured information (for example, as XML or even SOAP) rather than
trying to have to produce sufficient logging for diagnosis while keeping it human
readable.

* The instance managers may also provide code that does the constraint checking
between hosts and their guests. Installers may use a common constraint language, for

example based on XML, XPath and XQuery.

[00099] Layering

The SDM model provides a separation of concerns between the developers of
applications, the designers of the software infrastructure and the architects of the data
center. Each of these groups focuses on particular services and has a differing set of

concerns. For example, developers may be primarily concerned with the configuration

lee@hayes plic 509-324-9256 38 MS1-1776US

and connectivity between the hosts that they utilize, such as SQL, IIS and the CLR.
Designers of the host configuration may be primarily concerned with the network
topology and the OS configuration. The architects developing the network topology, OS
configuration and storage mapping may be primarily concerned with the hardware that
exists in the data center.

[000100] The SDM enables the functional composition of systems across a
horizontal and vertical axis. Composition along the horizontal axis is done with systems
and subsystems. Composition along the vertical axis is done with “layers”. Applications,
services, network topologies, and hardware fulfill a role in a distributed system, but are
typically defined independently and owned by different teams or organizations. Layering
is accomplished by components defining a set of constraints on a host and vice versa.
[000101] To support this separation of concerns, the SDM exposes a concept of
layering. Layering refers to using hosting relationships to bind an application to the
services on which it depends without declaring those services as part of the containment
structure of the application. Layering allows systems to be developed by different
individuals at different times and at different levels.

[000102] Fig. 7 illustrates an example layered setting. Four layers are illustrated in
Fig. 7: layer 702, layer 704, layer 706, and layer 708. Although four layers are shown in
Fig. 7, the actual number of layers can vary, and can be greater or less than four.
Additionally, the content of different layers can vary in different embodiments. As can be
seen in Fig. 7, the different layers are situated above and/or below other layers (e.g., layer
706 is above layer 704 but below layer 708).

[000103] Different systems and subsystems within a layer can interact with one

another, and also can interact with systems and subsystems of different layers. For

lee@hayes plic ~ 509-324-9256 39 MS1-1776US

example, a subsystem 710 in layer 708 can interact with a subsystem 712 in layer 708, as
well as a subsystem 714 in layer 706. Additionally, each layer can be viewed as the
environment for the next higher layer. For example layer 706 is the environment for
systems and subsystems in layer 708, while layer 704 is the environment for systems and
subsystems in layer 706. Each layer 702, 704, 706, and 708 has its own associated SDM
document.

[000104] The different layers 702, 704, 706, and 708 can represent different content.
In certain embodiments, layer 702 is a hardware layer, layer 704, is a network topology
and operating systems layer, layer 706 is an application hosts layer, and layer 708 is an
applications layer. The hardware layer represents the physical devices (e.g., computing
devices) on which the layered system is built (e.g., devices 102 of Fig. 1). The network
topology and operating systems layer represents the network topology of the computing
devices (e.g., network setting 100 of Fig. 1) as well as the operating systems installed on
those computing devices. The application hosts layer represents applications installed on
the computing devices that can host other applications (e.g., SQL Server, IIS, and so
forth). The application layer represents applications that are installed on the computing
devices that do not host other applications (e.g., entertainment applications such as
games, productivity applications such as word processors, reference applications such as
electronic encyclopedias, distributed applications such as may be used for web services or

financial analysis, and so forth).

lee@hayes plic ~ 509-324-9256 40 MS1-1776US

Example SDM Implementation

The following discussion describes an embodiment of the schema that defines the

elements of the SDM.

1 Definitions

Term Definition

Change Request A declarative document that describes a set of changes to a modeled system

Fully qualified A change request that has passed through the model evaluation stages and is now ready

change request to be executed against the target system

Abstract type A type that is used to define the settings required to act on a modeled system object

Concrete type A reusable definition of a modeled system object that contains definitions for member
types and relationships. ’

Relationship An sdm object that is used to describe the interaction between modeled system elements

System Definition ~ An xm! document that contains definitions for abstract objects, concrete types and

Model (SDM) relationships

Document

Software The combination of a set of SDM documents and the associated binary information (files)

Distribution Unit required to deploy those types to an SDM managed system

(SDU)

SDM Layer A layer is a set of abstract objects that are specific to the objects modeled in that layer. For
example the application layer types may include Web application and Database, while the
operating system layer may include types for file systems and network devices. Some
types will not be assigned to layers and will instead be usable across a range of layers.

SDM instance A set of concrete type and relationship instances that represent the modeled system

space

2 Architectural Overview

The System Definition Model (SDM) is designed is to support description of the configuration,
interaction and changes to the components in a distributed system (the modeled system).

LEE@HAYESPLLC 509-324+9256 a1

MS1-1776US

SDM is based on an object-relational model. We use objects to describe entities that exist in the
system and relationships to identify the links between them. The SDM further refines objects and
relationships to capture semantics that are important to the SDM. In particular, we divide objects into
systems, endpoints and resources and we divide relationships into communication, containment,
hosting, delegation, and reference.

We use abstract definitions to provide a common categorization of system parts allowing tool support
for a wide range of applications and providing the basis for type checking at design time. We expect the
set of abstract definitions to provide a comprehensive basis for system design and we expect that they
will change slowly over time.

We build concrete object definitions that represent parts of an actual application or datacenter design.
We take an abstract object definition and provide an implementation that defines the concrete type’s
members and setting values for its properties. We then build systems from collections of these
definitions.

Constraints are used to model restrictions over the allowed set of relationships that an instance can
participate in. We use constraints to capture fine grained requirements that depend on the configuration
of objects involved in a relationship. For example, a constraint may be used to validate that participants
on each end of a communication protocol are using compatible security settings.

In order to effect change on the target system, SDM uses a declarative description of the required
changes called a change request. SDM defines the process that is used to expand, validate and
execute a change request as part of the SDM execution mode!.

The instance space captures both the desired and current state of the managed application. We frack
changes in the instance space and associate them with the change request that initiated the change.

The following uml diagrams capture the broad interactions between the objects in the sdm model. For *
simplicity some of these interactions have been defined between base types where the actual
interaction exists between derived types and as a result is more specialized. For example,
communication relationships may only reference abstract endpoint definitions.

An Sdm document contains information that describes the document, managers for the definitions in
the document, import statements that reference other documents and a set of definitions.

Fig. 8 illustrates an example document.
All sdm definititions derive from a common base definition and may contain members as shown in Fig.

9. The relationship between definitions and members can be more complex than is shown on the
following diagrams.

LEE@HAYESPLLC 509-324-9256 42 MS1-1776US

Members are divided by the kind of definition that they reference as shown in Fig. 10.

Setting declarations reference a setting definition. Setting values and value lists provide values for
settings as shown in Fig. 11.

2.1 THE LIFECYCLE OF AN SDM APPLICATION

An example lifecycle of an SDM application in accordance with certain embodiments is shown in Fig.
12.

The application is designed and implemented within the visual studio environment (block 1202).
Developers implement components and then combine them within compound components. The
application is described within an SDM file. In order to verify that their application will deploy within a
particular datacenter a developer will bind their application to a representation of the datacenter also
described in an SDM file (block 1204). This representation will include definitions for the hosts of their:
application components and constraints on the configuration of their application. If the binding fails,
then the developer can revise their application design.

Once a developer is happy with their application, they can sign and publish the application so that there
is now a strong name and version associated with the application (block 1206). The published form of
an application is called a Software distribution Unit (SDU). The operator takes the SDU from the
developer and loads the application into the SDM runtime (block 1208). In the process of loading the
application, the operator chooses the mode! of the datacenter to which they want to bind the
application. When the operator chooses to deploy an application they supply deployment time
parameters to the application and they determine the scale of the application (block 1210). This is
done using a change request.

Once an application is deployed, the operator can interact with the runtime to determine the
configuration of the application and the setting for each part of the application (block 1212). The
runtime can also verify that the actual configuration of the application matches the desired configuration
as recorded in the runtime. The operator can remove a deployed application by submitting a change
request (block 1214). The operator can also rollback individual changes made to the running
application such as removing a service pack. In block 1216, the configuration of a running application
can be changed by adding or removing parts of the deployed application such as to web frontends.
The application can also be upgraded by installing newer versions of one or more of the application
components.

2.2 ABSTRACT OBJECT AND RELATIONSHIP DEFINITIONS

Abstract object definitions define the building blocks that we need in order to check application
configuration at design time and then to deploy and manage an application at run time. These building
blocks represent entities that exist in the modeled system. For example, we use abstract object
definitions to model files and directories, the configuration inside a web server or the databases inside a
sql server.

We use abstract relationship definitions to mode! the interactions that can occur between abstract
object definitions. Relationships are binary and directed, identifying the object definition that defines the

LEE@HAYESPLLC 509-324-9256 43 MS1-1776US

instances that participate in manifestations of the relationship. Relationships provide a way of tying
objects together so that we can mode! containment, construction and communication links between
objects. :

Constraints are then used by objects to constrain the relationships they participate in and by
relationships to constrain the objects that can be linked. These constraints can target both the definition
and the settings of participants in a relationship. This allows a constraint to narrow the participants in a
relationship to instance that are derived from a particular definition and to require that the instance have
setting values that fall in a particular range.

We divide Object definitions into three categories: systems, endpoints and resources.

- Abstract system definitions are used to describe self-contained independently deployable parts of an
application. These definitions represent parts of an application that interact through well defined
communication channels that can cross process and machine boundaries.

Abstract endpoint definitions are used to describe the communication endpoints that a system may
expose. These are used to model all forms of communication that the system should be aware of in
order to verify system connectivity at design time and to enable connections at runtime.

Abstract resource definitions describe behavior that is contained within a system. Resource definitions
may have strong dependencies on other resource definitions. These dependencies can include
requiring a specific installation order and initiating runtime interaction through undocumented
communication mechanisms.

All abstract object definitions share the ability to expose settings. These settings are simple name-value
pairs that use xml schema to define the type of the setting. Settings can be dynamic or static, if they are
static then they can only be set during the deployment process, if they are dynamic, then they can be
changed after deployment. The code responsible for applying settings values to the running system is
hosted in the SDM runtime.

The SDM supports inheritance over abstract object definitions. A derived definitions can extend the
properties exposed by its parent and can set values for its parents properties. A derived definition can
participate in any of the relationships that identify its parent as a participant.

Relationship definitions are divided in five categories: communication, containment, delegation, hosting,
and reference.

Communication relationships are used to capture potential communication interactions between
abstract endpoint definitions. The existence of a communication relationship indicates that it may be
possible for systems that expose endpoints of the identified definition to communicate. The actual
establishment of the link is subject to constraints on the endpoints and the exposure of the endpoints.

Containment relationships describe that ability for an abstract object definition to contain members of
another abstract object definition. More specifically, a containment relationship between two abstract
object definitions A and B allows a concrete object definition that implements A to contain a member of
a concrete object definition that implements B.

We use containment to model the natural nesting structures that occur when developers build

applications. By containing a member object, the parent is able to control the lifetime and visibility of the
contained object. All object instances in the run time space exist as members of other object instances,

LEE@HAYESPLLC 509-324-3256 44 MS1-1776US

forming a completely connected set of instances. Thus, the set of containment relationship describes
the allowed containment patterns that occur in the instance space.

Delegation relationships are used to selectively expose contained object members; in particular, we
use delegation to expose endpoint members from system definitions. By delegating a endpoint from a
subsystem, the outer system exposes the ability to communicate on a particular protoco! without
exposing the implementation behind the protocol.

Hosting and reference relationships are two forms of dependency relationship. A hosting relationship
describes a primary dependency between abstract objects that should exist before an instance of a
concrete object can be created. Every instance should participate as a guest in exactly one hosting
relationship, resulting in the hosting relationships also forming a completely connected tree over the
instance space. Reference relationships capture additional dependencies that can be used for
parameter flow and for construction ordering.

2.3 CONCRETE OBJECT AND RELATIONSHIP DEFINITIONS

We build concrete object definitions from abstract object definitions and concrete relationship definitions
from abstract relationship definitions.

The combination of abstract object definitions and abstract relationship definitions defines a schema for
modeling the target system. The role of a concrete object definition is to use a subset of the abstract
definition space to create a reusable configuration based on one or more abstract definitions. As a
simple analogy, the abstract definition space can be compared to the schema for database; the
concrete object definition would then represent a reusable template for a set of rows in the database.
The rows are only created in the database when an instance of the concrete object is created. To
perform design time validation we can validate a concrete object definition against the abstract
definition space in the same way that we would validate the rows in the database against the
constraints of the schema (for example foreign keys, etc).

Each concrete object definition provides an implementation for a specific abstract object definition. The
implementation includes extensions to the settings schema, values for settings and declarations for
object member, relationship members and constraint members and flow members. The behavior of the
concrete object follows the definition of the abstract object: abstract system definition become concrete
system definitions, abstract endpoint definitions become concrete endpoint definitions and abstract
resource definitions become concrete resource definitions.

Each concrete relationship definition provides an implementation for a specific abstract relationship
definition. The implementation can include settings declarations and values, nested members of the
same relationship category (hosting, containment, communication etc), and constraints on the types
that can participate in the relationship.

LEE@HAYES PLLC 509-324-9256 45 MS1-1776US

Concrete hosting relationships are used to define a mapping of the members of one concrete object
onto another concrete object. For example, a concrete hosting relationship can be used to identify the
bindings between a web application and the lIS host that it will be deployed to. More than one concrete
hosting relationship can exist for a given type allowing the developer to define different deployment
configurations for specific topologies '

2.4 MEMBERS

A concrete type can declare members of other concrete or abstract objects — we call these object
members. These members are then referenced from relationship members that define the relatlonshlps
between the object members.

Object members are used to create instances of a particular object definition. Settings flow can be used
to provide values for the object. When declaring an object member, the user can decide whether the
object member is created at the same time the outer system is created (value semantics) or is created
by an explicit new operation that occurs at some later time (reference semantics).

Relationship members define the relationships that object members will participate in when they are
created. If an object member is contained by its parent, then a containment relationship member will be
declared between the type member and the outer type. If the object member is delegated, thena -
delegation relationship member would be defined between the object member and a nested object
member. Communication relationship members can be declared between endpoints on object
members and dependency relationship members (reference and hosting) can be declared between
object members or nested object members.

Relationship constraints are used to narrow the set of relationships that a particular object is willing to
participate in. They identify constraints on a particular relationship and on the participants at the other
end of the relationship.

2.5 INSTANCE SPACE

The instance space stored in the SDM runtime reflects the current state of the modeled system. The
runtime contains a complete record of the instances that have been created and the relationships
between these instances. Each instance has an associated version history where each versnon is
linked to a change request.

The process of creating new instances is initiated by a change request. The change request defines a
set of create, update and delete requests for types and relationships associated with specific members
of an existing instance; the root is a special case.

The change request is expanded by the runtime, verified against all constraints, and then constructed.
The expansion process identifies object and relationship instances that are constructed implicitly as
part of the construction request of the containing object and then settings flow is then evaluated across
all relationships. The verification step checks that all required relationships exist and that the
relationships fulfill all constraints. Finally, the construction process determines an appropriate ordering
over the deployment, update or removal of each instance and then in the correct sequence passes
each instance to an instance manager to perform the appropriate action.

LEE@HAYESPLLC 509-324-9256 46 MS1-1776US

2.6 LAYERING

The goal of the SDM model is to allow a separation of concems between the developers of
applications, the designers of the software infrastructure and the architects of the datacenter. Each of
these groups focuses on particular services and has a differing set of dependencies.

For example, developers mainly care about the configuration and connectivity between the hosts that
they depend on such as SQL, IIS and the CLR. Designers of the host configuration care about the
network topology and the OS configuration, while the architects developing the network topology, OS
configuration and storage mapping need to know about the hardware that exists in the datacenter.

To support this separation of concerns, SDM exposes a concept of layering. Layering is the use of
hosting relationships to bind an application to the services that it depends on without declaring those
services as part of the containment structure of the application.

We identify four layers as part of the SDM modei ...

Application layer
s The application layer supports the construction of applications in a constrained context. The
context is defined by the configuration of the hosts identified in the host layer

+ Examples of system definitions in the application layer include web services, databases and

biztalk schedules.
Host Layer
5 o Build datacenters out of software components. Configure the connections between

components. Some of these components act as hosts for the application layer.
» Examples of system definitions in this layer — lIS, SQL, AD, EXCHANGE, DNS and Biztalk.

Network / OS / Storage layer
e Build data center networks and platforms. Configure the network security model and the
operating system platform configuration. Add storage to operating system configurations.

* Examples of system definitions in this layer — VLAN, Windows, Filter, Storage.
Hardware layer

The hardware layer identifies the types of machines that exist in the datacenter and the physical
connections that exist between these machines.

Fig. 13 shows the example mapping of a layer 4 web application to a layer 3 web server host. The
outer box at each layer represents a system, the boxes on the boundary represent endpoints and the
boxes on the inside represent resources. We map each of these elements via a hosting relationship to
a host at the layer below.

In order to satisfy the relationships required of a system we bind that system to a host system that has
matching capabilities. We call this process placement. At design time, we construct a concrete hosting
relationship that represents a possible placement. At deployment time, we instantiate an instance of the
concrete hosting relationship to bind the guest system instance to the host system instance.

LEE@HAYES PLLC 509-324-9256 47 MS1-1776US

2.7 MODEL EVALUATION
Associated with the SDM model is well-defined process for managing change to a distributed system.

Each change is driven by a declarative change request that passes through several processing steps
before the actions in the request are distributed and then executed against target systems.

3 Implementation Details

3.1 NAMING

There are a number of places in the SDM where we need a strong naming system for identifying
objects. The following naming system allows the creator of a type to sign the definition in such a way
that that the user of the definition can be sure that it is the same as the one that developer originally
published.

The following header is an example of an identifier for an sdm namespace:

<sdm name="FileSystem"
version="0.1.0.0"
publicKeyToken="AAAABBBBCCCCDDDD"
culture="neutral”
platform="neutral"
publicKey="alL.ongKey"
signature="TheHashOfTheFileContents" >

</sdm>

To reference a type in another namespace you need to import the namespace:

<import alias="FileSystem” name="FileSystem" version="0.1.0.0" publickeyToken="AAAABBBBCCCCDDDD"/>

Then you can use the alias to refer to types within the namespace:

FileSystem:file
3.1.1 Identity

SDM names are scoped by the namespace in which they are defined. A namespace is identified by a
name, version, language and a public key token and is contained within a single file.

The base form of identity includes name, version, culture, platform and a public key token.

<xs:attributeGroup name="Identity">
<xs:attribute name="name" type="simpleName" use="required"/>
<xs:attribute name="version" type="fourPartVersionType" use="required"/>
<xs:attribute name="publicKeyToken" type="publicKeyTokenType" use="optional’/>
<xs:attribute name="culture" type="xs:string" use="optional"/>
<xs:attribute name="platform” type="xs:string” use="optional"/>
</xs:attributeGroup>

Attribute/ | ment D scripti n

LEE@HAYESPLLC 509-324-9256 48 MS1-1776US

name The name of the sdm file is a friendly name that a developer can use
to reference the contents of the file. The name in combination with
the public key token provides a strong name for the file.

version Version is used to identify the version of the contents of the file. All
elements of the file adopt the same version number

publicKeyToken Public key token is a short name for the public key associated with
the file.

culture The culture of the binaries. Defaults to neutrat

platform The supported platform for the binaries.

The base identity can be used to reference an existing identity or in conjunction with a signature and a
public key, to create a new strong identity. The document will be signed using the private key, allowing
the user of the document to verify its contents using the public key.

<xs:attributeGroup name="namespaceldentity">
<xs:attributeGroup ref="ldentity"/>
<xs:attribute name="signature" type="xs:string" use="optional"/>
<xs:attribute name="publicKey" type="xs:string" use="optional"/>
</xs:attributeGroup>

Attribute / element Description
signature The signed hash of the contained sdm type definitions
publicKey The public key that can be used to check the signature of the file.

A public key token is a 16 character hex string that identifies the public part of a public/private key pair.
This is not the public key; it is simply a 64 bit hash of the public key.

<xs:simpleType name="publicKeyTokenType">
<xs:annotation>
<xs:documentation>Public Key Token: 16 hex digits in size</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:pattern value="([0-9]|[a-f]I[A-F]}{16}"/>
</xs:restriction>

</xs:simpleType>

3.1.2 Version

A file version is defined by a four part number of the form N.N.N.N where 0 <= N < 65535. By
convention the numbers refer to Major.Minor.Build.Revision.

<xs:simpleType name="fourPartVersionType">
LEE@HAYES PLLC 509-324-9256 49 MS1-1776US

<xs:restriction base="xs:string"™>
<xs:pattem value="([0-9}{1,4}|[0-5}[0-9K4}|64[0-9){ 3}|655{0-2][0-9]|6553[0-5])(\.([0-9K 1,4}}{0-5]{0-SK{4}164{0-S]{3}|655[0-
2][0-9]I6553[0-SDK3}">
</xs:restriction>
</xs:simpleType>

3.1.3 Simpl names

Simple names are made up of alpha-numeric characters and limited punctuation. The name should
start with a non-numeric character.

<xs:simpleType name="simpleName">
<xs:annotation>
<xs:documentation>name of a type or member</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:pattemn value="[a-z,A-Z{1}[0-9,a-z,A-Z,_])*"/>
</xs:restriction>
</xs:simpleType>

We plan to conform to the C# definition for identifiers; the appropriate section (2.4.2) has been inserted
below. The spec can be found at:

http://devdiv/SpecTool/Documents/\Whidbey/VCSharp/Formal%20L anguage%20Specification/CSharp
%20Language%20Specification.doc

Note we will not support “@” prefixed names in the sdm model.

The rules for identifiers given in this section correspond exactly to those recommended by the
Unicode Standard Annex 15, except that underscore is allowed as an initial character (as is
traditional in the C programming language), Unicode escape sequences are permitted in
identifiers, and the “@" character is allowed as a prefix to enable keywords to be used as
identifiers.

identifier:
available-identifier
@ identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not a keyword

identifier-or-keyword.
identifier-start-character identifier-part-characters

identifier-start-character:
letter-character
_ (the underscore character U+005F)

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
decimal-digit-character
connecting-character
combining-character

LEE@HAYESPLLC 509:324-9256 50 : MS1-1776US

formatting-character

letter-character:
A Unicode character of classes Lu, LI, Lt, Lm, Lo, or NI
A unicode-escape-sequence representing a character of classes Lu, L1, Lt, Lm, Lo, or
Nl :

combining-character:
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character:
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character:
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

formatting-character:
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

For information on the Unicode character classes mentioned above, see The Unicode
Standard, Version 3.0, section 4.5.

Examples of valid identifiers include “identifier1”,“_identifier?”, and “@i f".

An identifier in a conforming program should be in the canonical format defined by Unicode
Nommalization Form C, as defined by Unicode Standard Annex 15. The behavior when
encountering an identifier not in Normalization Form C is implementation-defined; however, a
diagnostic is not required.

The prefix “@” enables the use of keywords as identifiers, which is useful when interfacing with
other programming languages. The character @ is not actually part of the identifier, so the
identifier might be seen in other languages as a normal identifier, without the prefix. An
identifier with an @ prefix is called a verbatim identifier. Use of the @ prefix for identifiers that are
not keywords is permitted, but strongly discouraged as a matter of style.

The example:
class @class

public static void @static(bool @bool) {
if (@boo!)
System.Console . WriteLine("true");
else
System.Console.WriteLine("false");

}
class Class1

static void M() {
chu0061ss.st\w0061tic(true);
}

defines a class named “class” with a static method named “static” that takes a
parameter named “boo1”. Note that since Unicode escapes are not permitted in
keywords, the token “c1\u0061ss” is an identifier, and is the same identifier as

LEE@HAYESPLLC 509-324-9256 51 MS1-1776US

“@class”.

Two identifiers are considered the same if they are identical after the following
transformations are applied, in order:
®» The prefix “@”, if used, is removed.
® Each unicode-escape-sequence is transformed into its corresponding Unicode character.
8 Any formatting-characters are removed.

Identifiers containing two consecutive underscore characters (U+005F) are reserved for
use by the implementation. For example, an implementation might provide extended
keywords that begin with two underscores.

3.1.4 Reserved names

The following is a list of reserved names that we will prevent users from using when creating names for
objects in an SDM model.

Within certain contexts certain names will be reserved

Context Name
Abstract and concrete definitions this
Abstract and concrete hosting guest, host
Relationship definitions

Abstract and concrete containment parent, member
relationship definitions

Abstract and concrete client, server
communication relationship
definitions

Abstract and concrete reference source, dependent
relationship definitions

Abstract and concrete delegation proxy, delegate
relationships definitions

These names are reserved because of our integration with the CLR.

C# keywords
AddHandler AddressOf Alias And Ansi
As Assembly Auto Base Boolean

LEE@HAYESPLLC 509-324-9256 52 MS1-1776US

ByRef Byte ByVal Call Case
Catch CBool CByte CChar CDate
CDec CDbl Char Clnt Class
CLng CObj Const CShort CSng
CStr CType Date Decimal Declare
Default Delegate Dim Do Double
Each Else Elself End Enum
Erase Error Event - Exit ExternalSource
False Finalize Finally Float For
Friend Function Get GetType Goto
Handles If Implements Imports In
Inherits Integer Interface Is Let

Lib Like Long Loop Me

Mod Module MustInherit MustOverride MyBase
MyClass Namespace New Next Not
Nothing NotInheritable NotOverridable Object On
Option Optional Or Overloads Overridable
Overrides ParamArray Preserve Private Property
Protected Public RaiseEvent ReadOnly ReDim
Region REM RemoveHandler Resume Return
Select Set Shadows Shared Short
Single Static Step Stop String
Structure Sub SyncLock Then Throw
To True Try TypeOf Unicode
Until volatile When While With
WithEvents WriteOnly Xor eval extends
instanceof package var

3.1.5 References to other namespaces

We allow namespaces to reference other namespaces by importing them into the current namespace
and then associating an alias with the namespace. The imported namespace is referenced by name,
version and public key token. Versioning will be described in section 3.16.

<xs:complexType name="import">
<xs:attribute name="alias" type="simpleName" use="required"/>
<xs:attributeGroup ref="identity"/>

</xs:complexType>

Attribute / element

Description

LEE@HAYESPLLC 509-324-9256

53

MS1-1776US

alias The alias used to reference the external sdm file within the scope of
the current sdm file.

3.1.6 Qualified Paths

Qualified paths are then either names that refer to definitions or managers defined in the current
namespace or in an aliased namespace.

[<alias> :] <simpleName> (. <simpleName>)*

The alias is defined in an import statement. The following simple names identify a type or in the case of
a path, a nested type.

<xs:simpleType name="qualifiedName">
<xs:restriction base="xs:string">
<xs:pattern value="{a-z,A-Z{1}[0-9,2-2,A-Z,_})*(:|a-z. A-Z}{1}[0-9,a-z,A-Z,_])*)?(\.[a-2,A-Z}{1}{[0-8,a-z. A~

Z,—])t)y\vnl>

</xs.restriction>
</xs:simpleType>

3.1.7 Definition and Member Paths

A path is a sequence of names that identifies a member or setting. A path should begin with a well-
known name or member name that is defined by the object or relationship associated with the path.

¥

<simpleName>(.<simpleName>)*

<xs:simpleType name="path">
<xs:restriction base="xs:string">
<xs:pattern value="[a-z,A-Z{1}([0-9,a-z,A-Z,_1)*(\.[a-z,A-Z}{1}{[0-9,a-z.A-Z,_})*)*"/>
</xs:restriction>
</xs:simpleType>

3.1.8 Instance Paths

Paths in the instance space are based on xpaths where the element names in the xpath correspond to
member names and attributes in the xpath correspond to settings.

3.1.9 Name Resolution

Names that do not begin with an alias are not fully qualified. This means that the scope in which they
are evaluated can change the resulting binding. An example of this is nested definitions. When
resolving a nested definition name, definitions in local scope hide definitions in a broader scope.

3.2 SETTINGS

All definitions can expose settings declarations. These settings are used to describe the values that can
be provided when a concrete definition is created from an abstract definition, or when a definition is
references from a member within another definition.

To define a setting you first need to define the definition of the setting using xsd.
LEE@HAYES PLLC 509-324-9256 54 MS1-1776US

<xs:schema>
<xs:simpleType name="registryValueType">
<xs:restriction base="xs:string">
<xs:enumeration value="binary"/>
<xs.enumeration value="integer"/>
<xs:enumeration value="long"/>
<xs:enumeration value="expandString"/>
<xs:enumeration value="multiString"/>
<xs:enumeration value="string"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

You can then declare a setting that uses the definition and includes a set of attributes to define the
behavior of the setting.

<settingDeclaration name="valueType" type="registryValueType" access="readwrite" dynamic="false" required="true"/>

Once you have a setting declaration you can provide a value for the setting.

<settingValue name="valueType" fixed="true">long</settingValue>

3.2.1 Setting Definitions

We use XSD schemas to define the setting definitions used by setting declarations. We support the use
of simple and complex types from a schema though other schema elements may exist to support the
definition of those types.

The settings definition section should contain a complete xml schema including namespace declaration
and namespace imports. We will check that the imports in the xsd schema match the imports in the

sdm file with the exception of the xsd schema namespace. This means that all referenced types should
be defined in another sdm file; the schema cannot reference types that are defined in arbitrary xsd files.

<xs:complexType name="settingDefinitions">
<xs:sequence>
<xs:element ref="xs:schema"/>
</xs:sequence>
<xs:attribute name="manager” type="qualifiedName” use="optional"/>
<xs:attribute name="clrfNamespace" type="xs:string" use="optional"/>

</xs:complexType>
Attribute / element Description
xs:schema A schema in the http:/Amww w3,0rg/2001/XMLSchma namespace.
manager The clr assembly that contains helper classes for this schema
cirNamespace The clr namespace in which these classes are defined. All setting
type will resolve to a clr based on their mapping through CLR
serialization.

LEE@HAYESPLLC 509-324-9256 55 MS1-1776US

Settings should be resolvable from three separate namespaces:

a) The sdm namespace —when we refer to setting types within system, resource, endpoint,
relationship, constraint or flow types.

b) The clr namespace — when we refer to settings using strongly typed classes within the clr and
when setting types are built on other setting types.

c) The XSD namespace — when setting types are built using other setting types..
For this to work, we should place a number of restrictions on the way we declare settings:

a) All settings should be in the same groupings within each of the cIr, sdm and xsd
namespaces. That is, if two settings are together in one namespace, they should be
together in all three namespaces.

b) Imported namespaces within an xsd schema definition should match the imported
namespaces in an SDM file and the imported namespaces in the associated helper
assembly.

c) With the exception of the xsd namespace, all imported namespaces in an xsd schema
should be defined within an sdm file.

XSD types from imported SDM documents are accessible using QNames:
<alias>:<type-name>

Hence, for example, if Foo.sdm imports Bar.sdm, the setting types of Bar.sdm may be referenced in
the settingTypes element of Foo.sdm as this example illustrates:

<l--Foo.sdm-->
<import alias="bar” location="Bar.sdm”.../>
<settingTypes>
<xs:simpleType name="D">
<xs:restriction base="bar:B".../>
</xs:simpleType>
</settingTypes>
<l-Bar.sdm-->
<settingTypes>
<xs:simpleType name="B">
<xs:.restriction base="xs:string".../>

</xs:simpleType>

</settingTypes>

LEE@HAYESPLLC 509-324-9256 56 MS1-1776US

3.2.2 Builtin simpl data types

The SDM supports a limited set of built in data types that are an intersection of the XSD and C#
namespaces. These types are supported natively by the SDM runtime and are defined in the following
table. In addition to these types, users are free to construct and use their own mapping between xsd

and cls types.

Type Description XSD Type C# Type

string A sfring is a sequence of string string
Unicode characters

integer 64-bit signed integral type long long

float Single-precision floating point float float
type

double Double-precision floating double double
point type

boolean a boolean value is eithertrue boolean bool
or false

any The base type of all other anyType object
types

Date A simple date date dateTime

These types can be flowed to compatible derivations of these types in the c# and xsd type spaces. For
example a value for string can be flowed to an xsd type that defined a restriction on string and any
value can be flowed to a setting that accepts type="any”.

3.2.21 XSD builtin types

Fig. 14 illustrates an example built-in datatype hierarchy.

LEE@HAYESPLLC 509-324-9256 57 MS1-1776US

3222 C# data types
Type Description Example
object The ultimate base type of all other types object o = null;
string String type; a string is a sequence of Unicode string s = "hello";
characters

sbyte 8-bit signed integral type sbyte val = 12;
short 16-bit signed integral type short val = 12;
int 32-bit signed integral type int val = 12;
Tong 64-bit siened inteeral long vall = 12;

1t signed integral type Tong val2 = 34L;
byte 8-bit unsigned integral type byte vall = 12;
ushort 16-bit unsigned integral type ushort vall = 12;
uint 32-bit unsigned integral uint vall = 12;

1t unsigned 1ntegral type uint valz = 340:
ulong 64-bit unsiened integral ulong vall = 12;

It unsigned integral type ulong val2 = 34u;
ulong val3 = 56L;
ulong val4 = 78uL;

float Single-precision floating point type float val = 1.23F;
double Double-precision floati int double vall = 1.23;

ouble-precision floating point type double val2 — 4. 56h:
bool Bool - a boo1 value is either tru fal bool vall = true;

oolean type; a bool value is either true or false bool val2 - falee:
char Character type; a char value is a Unicode character | char val = 'h';
decimal | Precise decimal type with 28 significant digits decimal val = 1.23M;
3.223 Supported conversions

These are the conversions that exist between xsd types and cls types.

XML Schema (XSD) type

anyURI
base64Binary
Boolean

Byte
Date

dateTime
decimal
Double
duration
ENTITIES

LEE@HAYESPLLC 509-324-9256

58

.NET Framework type
System.Uri
System.Byte[]
System.Boolean
System.SByte
System.DateTime
System.DateTime
System.Decimal
System.Double
System.TimeSpan
System.String(]

MS1-1776US

ENTITY System.String
Float System.Single
gDay System.DateTime
gMonthDay System.DateTime
gYear System.DateTime
gYearMonth System.DateTime
hexBinary System.Byte[]

ID System.String
IDREF System.String
IDREFS System.String[]
int System.Int32
integer System.Decimal
language System.String
long System.Int64
month System.DateTime
Name System.String
NCName System.String
negativelnteger System.Decimal
NMTOKEN System.String
NMTOKENS System.String[]

nonNegativelnteger
nonPositivelnteger

System.Decimal
System.Decimal

normalizedString System.String
NOTATION System.String
positiveinteger System.Decimal
QName System.Xml.XmlQualifiedName
_ short System.Int16
string System.String
time System.DateTime
timePeriod System.DateTime
token System.String
unsignedByte System.Byte
unsignedint System.UInt32
unsignedLong System.UInt64
unsignedShort System.UInt16

3.2.3 Setting declaration

The settings declaration section uses the setting definitions from the previous section to create named
settings. Attributes are used to provide further information about each setting.

<xs:complexType name="SettingDeclaration">
<xs:complexContent>
<xs:extension base="Member">
<xs:attribute name="List” type="xs:boolean"/>
<xs:attributeGroup ref="settingsAttributes"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

LEE@HAYESPLLC 509-324-9256 59 MS1-1776US

Attribute/ lem nt Descripti n

settingsAttributes The set of attributes that can be applied to an individual setting
declaration

list This attribute is used to indicate that this setting is a list of values
rather than a single value.

3.2.4 List support

In order to support manipulation of multivalued settings, we support simple lists of setting values. A list
is a sequence of values of the same definition as the setting declaration. Lists can be flowed to other
lists that that they can either replace or merge with. We do not support duplicate detection when
merging values into a list as this can be done more flexibly using settings flow and we do not guarantee
any form of ordering.

A list declaration includes an attribute list set to true:
<settingDeclaration name="roles"” type="xs:string" list="true"/>

Values are then provided using a settingValueList. When providing the list, the user can specify
whether to replace or merge with previous values.

<settingValuel.ist name="roles" fix="true" replace="true">
<value>staticContent</value>
~<value>aspPages</value>

</settingValueList>

The sdm supports simple manipulation of lists of values. When a path from a flow member targets a
setting declaration, then the resulting behavior is dependent of the definitions at either end of the path.

Source Destination Result

Element List replace = false — element is added to the list
replace = true — list with single element

List List replace = false — source and destination lists are merged
replace = true — source list

List Element The sdm cannot resolve which element to select from the list so
this combination is not supported.

3.2.5 Setting Attributes

Setting attributes are used by the runtime to describe the behavior of a particular setting.

LEE@QHAYES PLLC 509-324-9256 60 MS1-1776US

<xs:attributeGroup name="settingsAttributes">
<xs:attribute name="access">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="readwrite"/>
<xs:enumeration value="readonly"/>
<xs:enumeration value="writeonly"/>
</xs:resfriction>
<Ixs:simpleType>
</xs:attribute>
<xs:attribute name="secure" type="xs:boolean” />
<xs:attribute name="deploymentTime" type="xs:boolean™/>
<xs:attribute name="required” type="xs:boolean"/>
<xs:attribute name="dynamic” type="xs:boolean"/>
<xs:attribute name="keyValue" type="xs:boolean"/>
<xs:attribute name="nillable" type="xs:boolean” />
</xs:attributeGroup>

LEE@HAYESPLLC 509-324-9256 61 MS1-1776US

Attribute Nam Descripti n Default
access The acc ss attribute of a setting specifies whether reading and writing the readWrite
setting’s value is permitted; providing SDM runtime access control and
display/editing rules to designers.
Attribute Meaning in SDM Display/Editing
Value Runtime Rules
readwrite Indicates that a setting Value is
value can be read and displayed and
written. can be edited.
readonly Indicates that a setting Value is
value can be read, but displayed, but
not written. This value cannot be
cannot be a target for edited.
flow.
In general a readonly
setting will be one that is
calculated or provided by
the real world instance.
Example: A value that
represents the number of
connections on a server
writeonly Indicates that a setting Value is
value can be written, but masked, but
not read. This value can be edited.
cannot be a source for
flow.
Example: a password for
a service account
deploymentTime A value that can only be provided as part of the deployment process for an False
instance. Design time constraints cannot be evaluated against this value. A
definition or member cannot supply a fixed value for this setting.
required If required is true, a value should be provided for this setting before an instance False
is deployed. This setting cannot be readonly.
dynamic If dynamic is true, the instance manager supports changes to this value after an True
instance has been deployed.
keyValue Keyvalue is used to Indicate that a setting is unique within its hosting scope. The False
instance manager will use this setting in paths to identity object instances and to
detect collisions with existing instances.
Secure The secure attribute of a setting specifies whether the value of a setting False
should be encrypted (true or false) when stored to an SDM document. Also
indicates whether tools should log this value during manipulations such as
installs.
LEE@HAYES PLLC 509-324+9256 62 MS1-1776US

nillable The nillable attribute of a setting indicates whether a setting value is valid if it
carries the namespace-qualified attribute xsi:nil from namespace
http:/Awww.w3.0rg/2001/XML Schema-instance.

3.2.6 Setting values

Depending on whether the setting has been declared as a single value or a list, the value for the setting

can be provided using either a setting value element or a setting value list element.

3.26.1 Setting value

A setting value is used to provide a value for a particular setting declaration. The value should match
the definition associated with the declaration. If the value is declared fixed, then the provided value will
be used in all derived definitions or referencing members depending on the point at which the value is

fixed. Once a value is fixed it cannot be overridden.

<xs:complexType name="settingValue">

<xs:complexContent>

<xs:restriction base="xs:anyType">
<xs:attribute name="name" type="simpleName" use="required"/>
<xs:attribute name="fixed" type="xs:boolean" use="optional" default="false”/>
<xs:attribute ref="xsi:nil" use="optional’ default="false"/>

</xs:restriction>
</xs:complexContent>
</xs:complexType>

Attribute / element

name

fixed

Description

The name of the setting declaration that this value will apply to.

The fixed attribute controls whether the value provided can
subsequently be overridden by new values A fixed value of true
indicates that the value provided for a setting cannot be overridden

If the value of fixed is true on a concrete definition member's setting
value, it is fixed in all deployments of that member. Otherwise, if the
value of fixed is false it is override-able in each deployment of that
member.

If the value of fixed is true on a concrete definition's setting value, it is
fixed for all members (i.e., uses) of that concrete definition.
Otherwise, if the value of fixed is false, it may vary with each
member (i.e., use) of that concrete definition.

If the value of fixed is true on an abstract definition’s setting value, it
is fixed for concrete definitions that implement or abstract objects that
extend that abstract definition. Otherwise, if the value of fixed is
false, it may be overridden by a concrete definition, in a derived
abstract definition or in a member declaration.

LEE@HAYESPLLC 509-324-9256 63 MS1-1776US

Nil Finally, a setting value is considered valid without content if it has the
attribute xsi:nil with the value tru . An element so labeled should be
empty, but can carry attributes if permitted by the setting definition .

3.26.2 Setting value list

A setting value list is used to provide one or more values for a setting declared as a list. When declaring
the values the user can decide to merge with previous values or to overwrite all previous values.

<xs:complexType name="settingValueList">
<xs:sequence>
<xs:element name="value" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs.complexContent>
<xs:restriction base="xs:anyType">
</xs:restriction>
</xs:complexContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="name" type="simpleName" use="required"/>
<xs:aftribute name="fixed" type="xs:boolean” use="optional" default="false"/>
<xs:attribute name="replace" type="xs:boolean” use="optional" default="{alse"/>
</xs:complexType>

Attribute / element Description
name The name of the setting declaration that this value will apply to.
fixed The fixed attribute controls whether the value provided can

subsequently be overridden by new values A fixed value of true
indicates that the value provided for a setting cannot be overridden

If the value of fixed is true on a concrete definition member’s setting
value, it is fixed in all deployments of that member. Otherwise, if the
value of fixed is false it is override-able in each deployment of that
member.

If the value of fixed is true on a concrete definition's setting value, it is
fixed for all members (i.e., uses) of that concrete definition.
Otherwise, if the value of fixed is false, it may vary with each
member (i.e., use) of that concrete definition.

If the value of fixed is true on an abstract definition’s setting value, it
is fixed for concrete definitions that implement or abstract objects that
extend that abstract definition. Otherwise, if the value of fixed is
false, it may be overridden by a concrete definition, in a derived
abstract definition or in a member declaration.

LEE@HAYES PLLC 509-324-9256 64 MS1-1776US

replace The replace attribute is used to indicate whether the new value for a
setting should replace or merge with any previous non-fixed values
for a setting.

If replace is true then all previous values will be ignored. If replace is
false, then the new and the previous values will be combined into a
single list. Duplicates will NOT be detected during the merge process.

3.2.7 Settings Inheritance

Settings inheritance means that a derived definition implicitly contains all the settings declarations from
the base definition. Some important aspects of settings inheritance are:

» Settings inheritance is transitive. If C is derived from B, and B is derived from A, then C inherits the
settings declared in B as well as the settings declared in A.

» Aderived definition can add new settings declarations to those it inherits from the base definition it
extends, but it cannot remove the definition of an inherited setting.

3.2.8 Type conversions

We support lossless conversions between the built in types. Other type conversions require flow in
order to execute the appropriate conversions.

3.3 ATTRIBUTES
Many of the objects in the SDM can be attributed to capture behavior that is orthogonal to core
behavior of the object. We use a general attribution model defined as follows:

3.4 DEFINITIONS AND MEMBERS

3.4.1 Definition

Definition is the base from which object, relationship, constraint and flow definitions are derived. All
definitions can include a settings schema, and design surface data. Each definition is identified by a
simple name and references a manager. The manager is responsible for providing extension support to
the SDM runtime for this particular definition.

The settings schema defines the values that can be found on an instance of this definition. The
DesignData element is used to contain data that is specific to the display and editing of this definition on
the design surface.

<xs:complexType name="Definition">
<xs:sequence>
<xs:element name="Description” type="Description” minOccurs="0"/>
<xs:element name="DesignData" type="DesignData" minOccurs="0"/>
<xs:choice minCccurs="0" maxOccurs="unbounded">
<xs:element name="SettingDeclaration” type="SettingDeclaration"/>
<xs:element name="SettingValue" type="SettingValue"/>
<xs:element name="SettingValueList” type="SettingValueList"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="Name" type="SimpleName" use="required"/>

LEE@HAYES PLLC 509-324-9256 65 MS1-1776US

<xs:attribute name="Manager" type="QualifiedName" use="optional"/>
<xs:attribute name="ClrClassName" type="xs:string” use="optional"/>
<Ixs:complexType>

Attribut / lem nt D scripti n
SettingDeclaration The declaration of a setting
SettingValue A value for a setting on the defintion or its base definition. A value can

be provided once for a setting declaration within an definition.

SettingValuel.ist A list of values for a writable list setting on the definition or its base
definition.

DesignData Design surface specific data

Name A name for this definition that is unique within the scope of the

containing sdm file.

Manager A reference to the manager declaration for this definition. See
section:3.10 for a definition of the manager.

CirClassName The name of the cir class that supports this definition in the runtime.
The class should exist in the assembly identified by the manager.
The manager attribute should be present if this attribute is present.

Description A text description of the definition.

3.4.2 Member

Members are used to identify definition instances that can exist at runtime. All members are identified
by a unique name within the scope of the type, can provide settings for the definition they reference and
can contain design surface specific data.

<xs:complexType name="Member">
<xs:sequence>
<xs:element name="Description” type="Description” minOccurs="0"/>
<xs:element name="DesignData" type="DesignData" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="SettingValue” type="SettingValue"/>
<xs:element name="SettingValueList" type="SettingValuelist"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="Name" type="SimpleName" use="required"/>
<xs:attribute name="Definition" type="QualifiedName” use="required"/>
</xs:complexType>

Attribute / element Description

Description A description of the members

LEE@HAYESPLLC 509-324-9256 66 MS1-1776US

DesignData Design surface specific information about the member

SettingValue Values for setlings that correspond to writeable settings on the
referenced type. If these values are marked as fixed then they should
be used when an instance is created for the member, if they are not
fixed, then the values can be overridden by deployment or flowed

parameters.
SettingValueList A list of values for a writable list setting on the referenced type.
Name A unique name for the member within the scope of the containing
type.
Definition The name of the definition that this member references.

3.5 SETTINGS FLOW

Settings flow is used to pass parameters between members of an object definition and between
participants in relationships . As part of a flow, the user can use transformations to combine or separate
setting values and to calculate new setting values.

All settings flow members use a flow definition to implement the transform. A flow definitoin is declared in
the sdm file. The following is a flow type that parses a url. -

<FlowDefinition name="UrToComponents">
<SettingDeclaration name="url" type="url" access="writeonly"/>
<SettingDeclaration name="protocol" type="xs:string"” access="readonly’/>
<SettingDeclaration name="server" type="xs:string" access="readonly”/>
<SettingDeclaration name="path" type="xs:string"” access="readonly"/>
<SettingDeclaration name="file" type="xs:string" access="readonly"/>
</FlowDefinition>

A flow member is then declared within an object or relationship. The flow member provides the input for
the flow definition and then directs the output from the flow to the target settings.

<Flow name="deconstructUr” type="UriToComponents">
<Input name="ur" path="webservice.url'/>
<Qutput name="server" path="webservice.server"/>
</Flow>

3.5.1 Flow definition

We use a flow definition to define a particular transform that we wish to apply to a set of setting values.
The flow definition exposes a setting schema that defines the input settings (write-only settings) and the
output settings (read-only settings), a DesignData section for design surface specific information such as
an input interface for defining the transform and a description for use when browsing the sdm file. The
flow definition is identified by name within the namespace in which it is defined. The definition also
identifies a manager that will support the runtime when it evaluates the flow.

LEE@HAYESPLLC 509-324-9256 67 MS1-1776US

We expect that the runtime will include several standard flow definition to simplify the construction of flow
elements where straightforward transformations are required. Examples might include copy, merge and
string substitution. Since flow definition can be parameterized, we also expect there to be one or more
simple transformations that perform different actions based on configuration parameters.

<xs:complexType name="FlowDefinition">
<xs:complexContent>
<xs:extension base="Definition"/>
</xs.complexContent>
</xs:complexType>

3.5.2 Flow member

Each flow element identifies one or more source nodes, one or more destination nodes, some static
settings and a flow definition. When the flow is evaluated, source data is collected from the source
nodes, combined with settings from the flow element and passed to the flow definition for
transformation. The output data is passed to the destination nodes.

Re-evaluation of the flow will be triggered whenever one of the source values changes. For this reason,
we need to avoid circular flows that cause values to flip flop. If the value remains constant then the loop
will terminate. The runtime will detect and terminate infinite loops by keeping track of the stack depth.

<xs:complexType name="FlowMember">
<xs:complexContent>
<xs:extension base="Member">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="Input" type="SettingTarget"/>
<xs:element name="Output” type="CutputPath"/>
</xs:choice>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

input Alist of paths to setting values that are used as input to the flow.
Each input should identify a write only setting on the flow definition.

output A list of paths to settings that will be set as a result of this flow. Each
output should identify a read only setting on the flow definition.

3.5.3 Setting target

A settings target identifies a path to a setting value in a member or nested member that is relative to a
well known name in the context in which the flow is defined. Examples of well-known names include
this in a definition or reference declaration, host and guest in a hosting relationships declaration, or a
target defined within a constraint declaration. The setting target also identifies the setting on the
associated flow definition that will be used as either the source value or destination setting of setting
identified by the path.

LEE@HAYESPLLC 509-324-9256 68 MS1-1776US

<xs:complexType name="SettingTarget">
<xs:attribute name="Name" type="SimpleName"/>
<xs:attribute name="Path" type="Path"/>
</xs:complexType>

Attribute / element Description

Name The name of the setting on the flow or constraint definition that is the
source or destination of the setting identified by the path.

Path Path to the source or destination setting relative to the context in
which the flow is defined. The path should identify a single setting —
this implies that the maximum cardinality of all the members on the
path should be one or zero.

Output path is a variation on the settingTarget that supports the semantics for fixing and replacing the
target values. ‘

<xs:complexType name="OutputPath™>
<xs:complexContent>
<xs:.extension base="SettingTarget">
<xs:attribute name="Fix" type="xs:boolean” use="optional"/>
<xs:attribute name="Replace" type="xs:boolean" use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

Fix This will declare the target value to be fixed. This means that any
attempts to subsequently modify the value will result in an error.

Replace When a list is the target of the path, we can choose to either merge or
replace the current contents of the list. The default behavior is to
merge with the current contents.

3.6 SETTINGS CONSTRAINTS

Constraints are used to identify restrictions on setting values of members of a definition or on the
participants in a relationship. These restrictions are evaluated in the instance space at both design time
and at deployment time.

All setting constraints use a constraint definition to evaluate the setting values. The constraint definition
uses settings declarations to identify the values it constrains. The following constraint definition
implements a simple comparison function that takes two arguments and an operator, then evaluates
the constraint and finally retums success or error.

<ConstraintDefinition name="SimpleOperatorComparison”>
<SettingDeclaration name="LHS" type="xs:any" access="writeonly"/>

LEE@HAYESPLLC 509-324-9256 69 MS1-1776US

<SettingDeclaration name="operator” type="operator" access="writeonly"/>
<SettingDeclaration name="RHS" type="xs:any" access="writeonly"/>
</ConstraintDefinition>

A constraint member then used to provide the values to the constraint type for evaluation.

<Constraint name="constraintSecurityMode" definition="SimpleOperatorComparison">
<Input name="LHS" path="webservice.securityMode"/>
<SettingValue name="operator">==</settingValue>
<SettingValue name="RHS">basicAuth</settingValue>

</Constraint >

3.6.1 Constraint definition -

A constraint definition defines a constraint that acts on a set of input values. The constraint can be
parameterized to select custom behavior or to support for a simple constraint engine that uses
parameters to define its behavior. We expect that a set of standard constraint definitions will be written
for simple parameter value constraints and a set of complex constraints to support known relationships
between abstract objects.

<xs:complexType name="ConstraintDefinition">
<xs:complexContent>
<xs:extension base="Definition"/>
</xs:complexContent>
</xs:complexType>

3.6.2 Constraint Member

A constraint member identifies a set of input values for a particular constraint definition. The member
can identify static values for settings and can use input statements to bind a constraint setting to a path.

<xs:complexType name="ConstraintMember">
<xs:complexContent>
<xs:extension base="Member">
<xs:choice minOccurs="0" maxOccurs="unbounded™>
<xs:element name="Input" type="SettingTarget"/>
</xs:choice>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

input A list of inputs to the constraint. An input identifies a path to the
source setting value that will be passed to the constraint and
constraint setting that will be set as a result. The source setting
definition and the constraint setting definition should be compatible.

3.7 SYSTEM ENDPOINT AND RESOURCE DEFINITIONS
This section describes the schema for abstract and concrete object definitions.

LEE@HAYESPLLC 509-324-9256 70 MS1-1776US

An abstract object definition exposes a set of setting declarations, can contain constraints on the
relationships that it participates in and has an associated manager in the runtime.

The following is an abstract system definition for a web server. The web server has two settings and
has a relationship constraint that requires it to contain at least on vsite type.

<AbstractSystemDefinition name="WebServer"
clrClassName="micorosft.sdm.| ISSupportClass”
manager="1SSupportCode">

<SettingDeclaration name="serverName" type="xs:string"/>
<SettingDeclaration name="category” type="xs:string"/>

<RelationshipConstraint name="containsVsites"
relationship="containmemRelationship"
myRole="parent"
targetType="vsite"
minOccurs="1"
maxOccurs="unbounded" />

</ AbstractSystemDefinition >
The vsite is an abstract endpoint definition that contains server binding information.

<AbstractEndpointDefinition name="vsite">
<SettingDeclaration name="ipAddress" type="ipaddress” required="true"/>
<SettingDeclaration name="Endpoint” type="xs:int"/>
<SettingDeclaration name="domainName" type="xs:int"/>
<SettingDeclaration name="securityModel!” type="securityModelEnum"/>

</AbstractEndpointDefinition>

A concrete system definition for a frontend webserver identifies the webserver category as static
content, contains a single byReference endpoint member which can represent between 1 and 100
endpoint instances. The concrete endpoint definition for the endpoint is nested inside the system -
definition and it defines the ip Endpoint for the vsite to be Endpoint 80.

<SystemDefinition name="FrontendWebServer" implements="WebServer" >
<SettingValue name="category” fixed="true">staticContentOniy</settingvalue>
<Port name="contentOnlyVsite" type="port80Vsite" isReference="true" minOccurs="1" maxOccurs="100"/>
<PortDefinition name="port80Vsite" implements="vsite">
<SettingValue name="Endpoint" fixed="true">80</settingValue>
</PortDefinition >
</SystemDefinition>

3.7.1 Object Definition

Abstract and concrete object extend the following base object definition. In addition to the elements
of the base type Definition, they share the ability to constrain the relationships that the objects
participate in.

<xs:complexType name="ObjectDefinition"™>
<xs:complexContent>
<xs:extension base="Definition">

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="Flow" type="FlowMember” minOccurs="0" maxQccurs="unbounded"/>
<xs:element name="RelationshipConstraintGroup” type="ReIationshipConstraintGroup“/>
<xs-element name="RelationshipConstraint” type=“RelationshipConstraini"/>

</xs:choice>

LEE@HAYES PLLC 509-324:9256 71 MS1-1776US

</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute/ | m nt D scripti n
Flow A flow members declaration
RelationshipConstraint Constraints on the relationships that these types can participate in.

RelationshipConstraintGroup ~ Constraints on the relationships that these types can participate in.

3.7.2 Abstract Object Definitions

Abstract object definitions are used to define building blocks that the design surface exposes and from
which all concrete objects are derived: a concrete object definition should implement an abstract
object definition.

Abstract object definitions extend SDM object by adding simple inheritance: the extends attribute is
used to identify a base object definition for an abstract object definition. The abstract object definition
then inherits the settings and relationship constraints from that base object definition. Through
inheritance, the object definition can extend the settings and constraints of the abstract object definition
by adding new settings and constraints.

Abstract object definitions can also add constraints on the relationships that they wish to participate in.
For example, an abstract object definition may require the existence of certain relationships, may
constrain the object definitions that may be placed on the other end of the relationship or may constrain
the settings on the instances that participate in a given relationship.

3.7.21 Abstract Object Definition

Al abstract objects can identify the layer with which they wish to be associated. If this is not provided it
is assumed that the object definition can be used at any layer. Abstract object definitions can identify a
base object definition that they extend, in which case they inherit the settings and constraints of that
object definition and can be substituted for the base object definition in the relationships in which the
base object definition participates.

<xs:complexType name="AbstractObjectDefinition">
<xs:complexContent>
<xs:extension base="ObjectDefinition">
<xs:attribute name="Layer" type="xs:string" use="optional"/>
<xs:attribute name="Extends" type="QualifiedName" use="optional"/>
</xs:extension>
<fxs:complexContent>
</xs:complexType>

Attribute / element Description
layer The layer attribute identifies the layer at which this abstract object
definition can be used. If it is not provided, the abstract object

LEE@HAYES PLLC 509:324-9256 72 MS1-1776US

definition can be used at any layer.

extends Identifies the abstract object definition that this object definition
derives from.

3.7.22 Abstract endpoint, system and resource object definitions

There are three classifications of abstract object definition in the SDM model, these are: abstract
endpoint definition, abstract system definition and abstract resource definition. Each of these is a simple
rename of abstract object defintion.

<xs:complexType name="AbstractEndpointDefinition">
<xs:complexContent>
<xs:extension base="AbstractObjectDefinition"/>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="AbstractSystemDefinition">
<xs:complexContent>
<xs:extension base="AbstractObjectDefinition"/>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="AbstractResourceDefinition">
<xs.complexContent>
<xs:extension base="AbstractObjectDefinition"/>
</xs:complexContent>

</xs:complexType>

Endpoint definitions represent communication endpoints. The settings on the endpoint relate to its use
in the binding process. For example, with a client server protocol, server endpoint definitions might use
the settings schema to identify settings that are required to bind to the endpoint, client endpoint
definitions might expose client specific connection attributes.

System definitions are used to represent collections of data, software or hardware elements. Examples
include web services, databases and switches. Resource definitions are used to capture specific
elements that can be identified as part of a system definition.

3.7.3 Implicit base definitions

All abstract object definitions that do not extend another abstract object definition implicitly extend one
of the endpoint, system or resource base definitions as illustrated in Fig. 15. These base definitions
form a root for each of the trees that can be used in relationship and constraint declarations. This allows
the relationship or constraint to indicate that any of the types derived from the root can be used in place
of the identified root definition. These root types are always abstract and cannot be instantiated directly.

The definitions of these types include base constraints that control their instantiation within the mode!;
they can be found in System.sdm.

LEE@HAYESPLLC 509-324-9256 73 MS1-1776US

3.7.4 Con rete object definiti ns

Concrete object definitions provide an implementation for an abstract object definition. The
implementation is constructed from object and relationship members, values for the settings of
implemented abstract definition, new settings declarations, flow between members and constraints on
members.

Concrete definitions can also contain declarations of nested definitions. These definitions can be used
for members within the scope of the containing definitions and referenced in constraints outside the
scope of the definition.

3.741 Base concrete object definition

Base concrete type extends object definition, inheriting setting declarations, design data, an optional
manager reference, a name, constraints on the relationships that it can participate in, the ability to
provide values for the abstract definition’s settings and the ability to describe flow between its settings
and its member’s settings. The concrete definition then adds the ability to identify the abstract definition
that it implements and several optional attributes add the ability to customize the binding behavior of the
definition.

<xs:complexType name="ConcreteObjectDefinition">
<xs:complexContent>
<xs:extension base="0ObjectDefinition">
<xs:attribute name="Implements" type="QualifiedName" use="required"/>
<fxs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

Implements Identifies the abstract type that this concrete type implements.

3.74.2 Object Member

Objects members should reference either an abstract or concrete object definition. They can represent
an array of instances in which case they can define the upper and lower bounds for the array. If they
are a reference member, then the user instantiating the object should explicitly construct an instance for
the member. If they are not a reference member, then the runtime will create an instance at the same
time as the outer object is created.

<xs:complexType name="ObjectMember">
<xs:complexContent>
<xs:extension base="Member">
<xs:attribute name="MinOccurs" type="xs:int" use="optional"/>
<xs:attribute name="MaxOccurs" type="xs:int" use="optional"/>
<xs:attribute name="IsReference" type="xs:boolean” use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

LEE@HAYES PLLC 509-324-9256 74 MS1-1776US

Attribute / lem nt Description

MinOccurs Lower bound on the number of instances associated with this
member. If it is zero, then the member is optional. Default is one.

MaxOccurs Upper bound on the number of instances associated with this
member. Should be one or greater. Default is one.

L |

IsReference If this value is true, then the instance associated with the member
should be explicitly created by the operator or referenced in another
type. If itis false, then the instance is created when the type is
created.

in an sdm model we need to differentiate members that get created when the parent is constructed and
destroyed when the parent is destroyed from those that may have lifetimes independent from the
parent. We use the IsReference attribute for this purpose. A simple analogy is with C++ declarations
that allow stack based and heap based construction based on whether new is used to create an
instance. If a member is marked as IsReference then an explicit new operation is required on the part
of the operator to create an instance and associate it with the member.

There are a number of reasons that we do this:

1. When an operator constructs a system, we expose the ability to construct isReference members.
This greatly simplifies the operator experience. ‘

2. When we process an sdm document we have clear boundaries at which the instance space of the
document can vary from that of the concrete definition space.

3743 Relationship Member

Relationship members identify the relationships that will exist between object members when they
are created. Relationship instances are either explicitly created by the operator or implicitly created
by runtime. Examples of the former are hosting relationships between instances, the latter,
communication relationships between systems.

<xs:complexType name="RelationshipMember™>
<xs:complexContent>
<xs:extension base="Member">
</xs.extension>
</xs:complexContent>
</xs:complexType>

37431 Hosting Member

Host members are used to declare a hosting relationship between two object members. The object
members may be direct members of the containing definition or nested members that have a
membership relationship with the definition. There should be a membership chain between the
referenced member and the containing definition.

LEE@HAYESPLLC 509-324-9256 75 MS1-1776US

<xs:complexType name="HostingMember">
<xs:complexContent>
<xs:extension base="RelationshipMember">
<xs:attribute name="GuestMember” type="Path” use="required"/>
<xs:attribute name="HostMember" type="Path” use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

GuestMember Identifies 2 member that has a definition compatible with the guest of
the relationship. Member can be nested.

HostMember Identifies a member that has a definition compatible with the host of
the relationship. Member can be nested.

37432 Communication Member

A communication member is used to declare a communication relationship between endpoint
members of inmediate system members of the definition.

<xs:complexType name="CommunicationMember">
<xs.complexContent>
<xs:extension base="RelationshipMember">
<xs:attribute name="ClientMember" type="Path” use="required"/>
<xs:attribute name="ServerMember" type="Path” use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

ClientMember Identifies an endpoint member that has a definition compatible with
the client definition of the relationship. Endpoint member should be a
member of an immediate system member of the definition.

ServerMember Identifies an endpoint member that has a definitioncompatible with
the server definition of the relationship. Endpoint member should be a
member of an immediate system member of the definition.

37433 Containment Member

A containment member is used to declare that a type member is contained by the type. Each type
member can either be contained or delegated. The containment member automatically sets the parent
value of the containment relationship to be the this pointer of the relationship.

<xs:complexType name="ContainmentMember">
<xs:complexContent>
<xs:extension base="RelationshipMember™>
<xs:attribute name="ChildMember" type="Path" use="required"/>
</xs:extension>

LEE@HAYESPLLC 509-324-9256 76 MS1-1776US

</xs:complexContent>
</xs:complexType>

Attribut / lem nt D scripti n

ChildMember Identifies an immediate object member that will be contained by the
parent.

3.7434 Delegation Member

A delegation member is used to set up a delegation relationship between an endpoint definition
member on the outer type and an endpoint definition member on an immediate system member of the
outer type.

<xs:complexType name="DelegationMember">
<xs:complexContent>
<xs:extension base="RelationshipMember">
<xs:attribute name="ProxyMember" type="Path" use="required"/>
<xs:attribute name="DelegateMember” type="Path" use="required"/>
<Ixs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

ProxyMember Proxy identifies an immediate endpoint member on the system that
does not have a containment relationship to the system. The
definition of the member should match the definition of the proxy on
the delegation relationship.

DelegateMember Delegate identifies an endpoint member on an immediate member of
the type. The type of the endpoint member should match the
delegate type on the delegation relationship.

37435 Reference Member

A reference member is used to set up a reference relationship between two immediate or nested
members of the outer system.

<xs:complexType name="ReferenceMember">
<xs:complexContent>
<xs:extension base="RelationshipMember">
<xs:attribute name="DependentMember” type="Path" use="required"/>
<xs:attribute name="SourceMember” type="Path" use="required"/>
<fxs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description
dependentMember The object member that depends on the source member. Should
match the definition of the dependent object in the reference

LEE@HAYESPLLC 508-324-9256 77 MS1-1776US

relationship.

sourceMember The source object member. Should match the definition of the source
object in the reference relationship.

3744 Endpoint definition

Endpoint definitions extend the base object definition by adding the ability to declare nested resource
types, resource members and host, containment and reference relationship members.

<xs:complexType name="EndpointDefinition">
<xs:complexContent>
<xs:extension base="ConcreteObjectDefinition">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="ResourceDefinition” type="ResourceDefinition"/>
<xs:element name="Resource" type="ResourceMember"/>
<xs-element name="Hosting" type="HostingMember"/>
<xs:element name="Containment” type="ContainmentMember"/>
<xs'element name="Reference" type="ReferenceMember"/>
</xs:choice>
</xs.extension>
</xs.complexContent>
</xs:complexType>

Attribute / element Description

ResourceDefinition A nested resource definition that can be used by type members
within the scope of the outer type definition.

Resource A resource member declaration that references a resource type.
Hosting A hosting relationship member declaration.

Containment A containment relationship member declaration.

Reference A reference relationship member declaration.

3.745 Service definition

A system type extends the base type by adding support for: nested endpoint, system and resource
types; endpoint, system, and resource members and host, containment, connection, delegation and
reference relationships.

<xs:complexType name="ServiceDefinition">
<xs:complexContent>
<xs-extension base="ConcreteObjectDefinition™>
<xs:choice minOccurs="0" maxOccurs="unbounded™>
<xs-element name="EndpointDefinition" type="EndpointDefinition™/>
<xs:element name="ServiceDefinition" type="ServiceDefinition"/>
<xs:element name="ResourceDefinition” type="ResourceDefinition"/>
<xs-element name="Endpoint" type="EndpointMember"/>
<xs:element name="Subsystem" type="SubSystem"/>

LEE@HAYESPLLC 509-324°9256 78 MS1-1776US

<xs:element name="Resource" type="ResourceMember”/>
<xs:element name="Hosting" type="HostingMember"/>
<xs:element name="Containment” type="ContainmentMember"/>
<xs:element name="Connection" type="CommunicationMember"/>
<xs:element name="Delegation” type="DelegationMember"/>
<xs:element name="Reference" type="ReferenceMember"/>
</xs:choice>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

EndpointDefinition A nested endpoint definition that can be used by members within the
scope of the outer service definition

ResourceDefinition A nested resource definition that can be used by type members
within the scope of the outer type definition.

SystemDefinition A nested system definition that can be used by members within the
scope of the outer system definition

Endpoint An endpoint member declaration that references an endpoint
definition.

Subsystem A subsystem member declaratiorj that references a system definition

Resource A resource member declaration that references a resource definition.

Containment A containment relationship member declaration.

Hosting A hosting relationship member declaration.

Connection A connection relationship member declaration.

Delegation A delegation relationship member declaration.

Reference A reference relationship member declaration.

3746 Resource definition

A resource type may contain nested resource type definitions, resource members, and host,
containment and reference relationship members.

<xs:complexType name="ResourceDefinition">
<xs:complexContent>
<xs:extension base="ConcreteObjectDefinition™>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="ResourceDefinition" type="ResourceDefinition"/>

LEE@HAYES PLLC 509-324-9256 79 MS1-1776US

<xs:element name="Resource" type="ResourceMember"/>
<xs:element name="Hosting" type="HostingMember"/>
<xs:element name="Containment" type="ContainmentMember"/>
<xs;element name="Reference" type="ReferenceMember"/>
</xs:choice>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

ResourceDefinition A nested resource definition that can be used by members within the
scope of the outer resource definition.

Resource A resource member declaration that references a resource defintion.
Hosting A hosting relationship member declaration.

Containment A containment relationship member declaration.

Reference A reference relationship member declaration.

3.74.7 Relationship Rules

For a particular instance of an object definition the following tables identify the cardinality associated
with each of the roles that the instance can play.

LEE@HAYESPLLC 509-324-9256 80 MS1-1776US

3.74.71 System Rules

D finiti n Role System Endp int R source

System Parent(0...*) Contains Contains Contains
Member(1...1) ContainedBy Not Allowed Not Allowed
Proxy(0...") Not Allowed Not Allowed Not Allowed
Delegate(0...*) Not Allowed Not Aliowed Not Allowed
Client(0...") Not Allowed Not Allowed Not Allowed
Server(0..*) Not Aflowed Not Allowed Not Allowed
Guest(1..1) HostedBy HostedBy (??) HostedBy
Host(0..) Hosts Hosts Hosts
Source(0..*) Provides Not Allowed Not Allowed
Dependent(0..*) Consumes Not Allowed Not Allowed

37472 Endpoint Rules

Role System Endpoint Resource

Endpoint Parent(0...*) Not Allowed Not Allowed Contains
Member(1...1) ContainedBy Not Allowed Not Allowed
Proxy(0...*) Not Allowed DelegatesTo Not Allowed
Delegate(0...*) Not Allowed Implements Not Allowed
Client(0...") Not Allowed ConnectsTo Not Allowed
Server(0..*) Not Aliowed ProvidesService Not Allowed
Guest(1..1) HostedBy HostedBy HostedBy
Host(0..") Hosts Hosts Hosts
Source(0..*) Not Allowed Provides Provides

LEE@HAYESPLLC 509-324:9256 81

MS1-1776US

% Dependent(0..*) Not Allowed Consumes Consumes
i
3.74.7.3 Resource Rules
Role System Endpoint Resource
Resource Parent(0...*) Not Allowed Not Allowed Contains

Member(1...1) ContainedBy ContainedBy ContainedBy
Proxy(0...*) Not Allowed Not Allowed Not Allowed
Delegate(0...*) Not Allowed Not Allowed Not Allowed
Client(0...*) Not Allowed Not Allowed Not Allowed
Server(0..") Not Allowed Not Allowed Not Allowed
Guest(1..1) HostedBy HostedBy HostedBy
Host(0..*) Hosts Hosts Hosts
Source(0..*) Not Allowed Provides Provides
Dependent(0..*) Not Allowed Consumes Consumes

37474 Notes

Every instance should participate in exactly one containment relationship and at least one hosting

relationship.

This means that:

A) non-reference members should identify a containment relationship

b) in order to be constructed a reference member should identify a containment relationship

c) reference members that do not have a containment relationship can only delegate to other members.

3.8 RELATIONSHIPS

Relationships are used to identify possible interactions between types. They are binary and directed,
each identifying the type of the instances that can participate in the relationship. Relationships can also
constrain the settings of the instances that participate in the relationship and can flow setting values

across the relationship.

LEE@HAYESPLLC 509-324-9256 82

The following is a possible hosting relationship for a webApplication on the webserver described in the
types section. The relationship contains a constraint that verifies that the security models of the two
systems are compatible and it contains a settings fiow member that copies the server name from the
vsite to the vdir.

<AbstractHostingDefinition name="vsiteHostsVdir" guestType="vdir" hostType="vsite">

<ObjectConstraint name="checkCompatibility" primaryRole="guest" primaryType="vdir">
<Constraint name="constrainSecurityModel” type="SimpleOperatorComparison”>
<input name="LHS" path="host.securityModel"/>
<settingValue name="operator">==</settingValue>
<input name="RHS" path="guest.securityModel"/>
</Constraint>
</ ObjectConstraint >

<flow type="copy" name="copyServerToVdir'>
<input name="source” path="host.server"/>
<output name="destination" path="guest.server"/>
</flow>

</ AbstractHostingDefinition >

A relationship is used by declaring a relationship member that identifies the type members that will
participate in the relationship.

<SystemDefinition name="testSystem" implements="ApplicationSpace">

<resource name="myVdir" type="vdir" isReference="false"/>

<resource name="myVsite" type="vsite" isReference="false"/>

<hosting relationship="vsiteHostsVdir" guestMember="myVdir" hostMember="myVsite"/>
</ SystemDefinition >

3.8.1 Relationship definition

The base relationship definition adds object constraints and flow to definitions . Object constraints are
statements about the setting values for the object instances that participate in an instance of this
relationship. For example, a communication relationship that represents a DCOM connection may
check that the security settings for client and server are compatible. In this case, there is a strict
relationship between settings that could easily be captured as part of the design process; there are four
factorial setting combinations over the relationship but a much smaller number of valid combinations.

Flow gives the ability for the relationship developer to forward values from one instance to another. This
allows the object definitions to be developed separately from their possible interactions and allows the
instance to stand alone as a reference point for information rather than requiring a subset of the
relationship graph in order to fully describe a particular instance.

The name for the relationship should be unique within the namespace that contains the relationship.

<xs:complexType name="RelationshipDefinition">
<xs:complexContent>
<xs:extension base="Definition">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="0ObjectConstraintGroup” type="ObjectConstraintGroup"/>
<xs:element name="0ObjectConstraint” type="ObjectConstraint"/>
<xs:element name="Flow" type="FlowMember"/>
</xs:choice>
</xs:extension>
</xs:complexContent>
</xs:complexType>

LEE@HAYESPLLC 509-324-9256 83 MS1-1776US

Attribut /el ment D scripti n

ObjectConstraint Constraints on the instances that participate in this relationship. See
(group) section: 3.5.3
Flow Flow between the instances that participate in this refationship.

3.8.2 Abstract Relationships

Abstract relationships are relationships that are defined between two abstract object definitions. They
represent possible interactions between the two definitions.

<xs:complexType name="AbstractRelationshipDefinition">
<xs:complexContent>
<xs:extension base="RelationshipDefinition">
<xs-attribute name="extends" type="QualificdName" use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

3.8.21 Abstract Communication Relationship

Communication relationships are used to capture possible communication links between endpoint
definitions. They are used to describe interaction between independently deployed software elements.
The communication relationship schema extends the base relation schema by adding client and server
endpoint references.

<xs:complexType name="AbstractCommunicationDefinition">
<xs:complexContent>
<xs:extension base="AbstractRelationshipDefinition">
<xs-attribute name="ClientDefinition" type="QualifiedName" use="required"/>
<xs:attribute name="ServerDefinition” type="QualifiedName" use="required"/>
</xs:extension>
</xs:complexContent>
</xs.complexType>

Attribute / element Description

ClientDefinition The defintion of the dlient instance involved in the communication
relationship

ServerDefinition The type of the server instance involved in the relationship

The following combinations of abstract type pairs are valid for communication relationships:

Client Type Server Type

LEE@HAYES PLLC 509-324-9256 84 MS1-1776US

Endpoint Endpoint

3822 Abstract Hosting Relationship

Hosting relationships are used to capture the fact that a guest requires a host in order to be
constructed. Since there can be more than on possible host for a guest, this implies that the hosting
relationship is also responsible for the construction of the guest on a host. Soin order to create an
instance of an object, a hosting relationship should exist from a guestto a compatible host.

For example, a hosting relationship may exist between a Webservice object definition and an IIS object
definition. In this case, the relationship indicates that it may be possible to create an instance of system
MyWebservice on an instance of system MyllS using the manager on the hosting relationship
assuming MyWebservice and MylIS implement webservice and IIS respectively. We do not know
whether it will be possible to create the relationship until we have evaluated constraints that exist on
both the systems and the relationship.

<xs:complexType name="AbstractHostingDefinition™>
<xs.complexContent>
<xs:extension base="AbstractRelationshipDefinition">
<xs:attribute name="GuestDefinition" type="QualifiedName" use="required"/>
<xs:attribute name="HostDefinition" type="QualifiedName" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description -
GuestDefinition Identifies the definition of the guest instance.
HostDefinition Identifies the definition of the host instance.

The following combinations of abstract definition pairs are valid for hosting relationships:

Guest Type Host Type
Endpoint Endpoint
Resource Resource
Resource System
System Resource
System System

LEE@HAYESPLLC 509-324-9256 85 MS1-1776US

3.823 Abstract Containment Relationship

A containment relationship between two abstract objects captures the fact that a concrete type based
on the parentType can contain members based on the memberType. Containment implies that the
parent instance can control the lifetime of the member instance and can delegate behavior to the
member instance.

<xs:complexType name="AbstractContainmentDefinition">
<xs:complexContent>
<xs:extension base="AbstractRelationshipDefinition">
<xs:attribute name="ParentDefinition" type="QualifiedName" use="required"/>
<xs:attribute name="MemberDefinition" type="QualifliedName" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

ParentDefinition Identifies the definition of the instance that will contain the member.

MemberDefinition Identifies the definition of the instance that will be the contained
member

The following combinations of abstract definition pairs are valid for containment relationships:

Parent Type Member Type
System Endpoint
System Resource
System System
Endpoint Resource
Resource Resource

3.8.24 Abstract Delegation Relationship

Delegation is used to forward behavior from an outer system to a contained system. The way we do
this is by delegating the endpoints on the outer system to endpoints on the inner system. This
effectively forwards all interaction that would have been directed to the outer system to the endpoint on

the inner system. Delegation can be chained, allowing the inner system to further delegate its behavior
to another system.

A delegation relationship defines pairs of abstract endpoint definitions that can participate in the

delegation. Each relationship identifies an abstract endpoint definition that can act as a proxy and an
abstract endpoint definition to which it can delegate behavior.

LEE@HAYES PLLC 509-324+9256 86 MS1-1776US

<xs:complexType name="AbstractDelegationDefinition">
<xs.complexContent>
<xs:extension base="AbstractRelationshipDefinition">
<xs:attribute name="ProxyDefinition" type="QualifiedName" use="required"/>
<xs:attribute name="DelegateDefinition” type="QualifiedName" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

ProxyDefinition Identifies the definition of the outer endpoint that delegates its
behavior to the inner endpoint

DelegateDefinition Identifies the definition of the inner endpoint that provides the required
behavior.

The following combinations of abstract type pairs are valid for delegation relationships:

Proxy Type Delegate Type

Endpoint Endpoint

We may allow resource and system delegation to support binding between layers. For example, to
allow IS to expose part of the file system without having to deploy it.

3.8.25 Abstract Reference Relationship

We use reference relationships to capture strong dependencies between instances that are in addition
to the hosting relationship dependency. These dependencies are used to control construction order
during deployment and flow parameters between systems during installation and update. Because
reference relationships indicate a strong dependency, we cannot allow a reference relationship to cross
a system boundary. This means that resources within one system cannot have dependencies on
resources in another system. This would make the system no longer an independent unit of
deployment. Where dependencies exist between systems, we use communication relationships.
Communication relationships can change over time without requiring reinstallation of the system.

<xs:complexType name="AbstractReferenceDefinition™>
<xs:complexContent>
<xs:extension base="AbstractRelationshipDefinition™>
<xs:attribute name="DependentDefinition” type="QualifiedName” use="required"/>
<xs:attribute name="SourceDefinition" type="QualifiedName” use="required"/>
</xs:extension>
</xs:complexContent>
</xs.complexType>

Attribute / element Description

DependentDefinition The definition of the instance that depends on the source instance

LEE@HAYESPLLC 509-324-9256 87 ' MS1-1776US

SourceDefinition The definition of the source instance. This instance is not required to
be aware of the dependency.

The following combinations of abstract type pairs are valid for reference relationships:

Dependent Type Source Type
System System
Resource Resource

3.8.3 Implicit base relationships

All abstract relationships implicitly extend one of the base relationships definitions as illustrated in'Fig.
16. These definitions form a root for each of the relationship trees. By doing this we can refer to the root
definition from within constraint definitions and we can inherit common type constraints from the root

type.

3.8.4 Concrete Relationships

Concrete relationships are relationships between two concrete object definitions. Each concrete
relationship should implement an abstract relationship. The abstract relationship should be between a
matching pair of abstract objects definitions that are directly or indirectly (through inheritance)
implemented by the concrete object definitions.

<xs:complexType name="ConcreteRelationship">
<xs:complexContent>
<xs:extension base="RelationshipDefinition™>
<xs:attribute name="implements" type="QualifiedName"/>
</xs.extension>
</xs:complexContent>

</xs:complexType>
3.8.4.1 Hosting Relationship

When we deploy an application to a datacenter we need to resolve all the outstanding hosting
relationships for the systems within the application. To do this the operator would need to create
hosting members for each of the required hosting relationships. To simplify the task of the operator and
to allow the developer to guide the deployment process, the developer can instead create a concrete
hosting relationship. The concrete hosting relationship is used to group a set of hosting relationship
members in such a way that the operator need only declare a single hosting member when deploying
the application.

<xs:complexType name="HostingDefinition">
<xs:complexContent>
<xs:extension base="ConcreteRelationship">
<xs:sequence>
<xs:element name="Hosting" type="HostingMember" minOccurs="0" maxOccurs="unbounded"/>

LEE@HAYESPLLC 509-324-9256 88 MS1-1776US

<I/xs:sequence>
<xs:attribute name="GuestDefinition" type="QualifiedName"” use="required"/>
<xs:attribute name="HostDefinition" type="QualifiedName" use="required"/>
</xs:extension>
</xs.complexContent>

</xs:complexType>

Attribute / element Description

HostDefinition The name of the guest concrete object definition to which this hosting
relationship applies.

GuestDefinition The name of the host concrete object definition to which this hosting
relationship applies.

Hosting A list of hosting relationship members that reference members rooted
to the guest and host definitions of the concrete relationship

The following combinations of concrete type pairs are valid for hosting relationships:

Guest Type Host Type

System System

A guest can be bound to a host iff

For each guestMember in Guest

There exists one or more hostMember in Host where

guestMember.Type has a hosting relation with hostMember.type

and guestMember .hostConstraints validate against hostMember.settings
and hostMember.guestConstraints validate against guestMember.settings

and for each member of guestMember there exists a binding to a member of hostMember

For example the following concrete relationship binds a layer three system (Bike) to a layer two host
(operating System). In this case, we define a setting for the hosting relationship with the default value of
“systern folder”. We flow this setting to one of three hosting members that define the hosting
relationship between systems of the layer 3 application and systems of the layer 2 host.

<HostingDefinition name="DefaultBikePlacement" guestDefinition="Bike" hostDefinition="OperatingSystem:OperatingSystem™>
<setlingDeclaration name="fileLocationRelativeToRoot" definition="xs:sting" access="readwrite" dynamic="false"f>
<settingValue name="dirPath">systemFolder</settingValue>
<flow name="copyPath" definition="copy”">
<input name="source" path="dirPath"/>
<output name="destination” path="bikeExecutableHost.hostRelativePath"/>
<fflow>
<hosting name="bikeExecutableHost" relationship="fileDirectoryHost"
guestMember="guest.bikeFile" hostMember="host.FileSystem"/>
<hosting name="hikeEventKeyHost" relationship="registryKeyRegistryKeyHost"
guestMember="guest bikeEventKey"” hostMember="host.Registry. ApplicationEventKey"/>
<hosting name="bikeSoftwareKeyHost" relationship="registryKeyRegistryKeyHost"

LEE@HAYESPLLC 509-324-9256 89 MS1-1776US

guestMember="guest.bikeSoftwareKey" hostMember="host. Registry. HKLM"/>
</HostingDefinition >

3.84.2 Reference Relationship

We can use a concrete reference relationship between two concrete types to capture specific
dependencies between systems that do not involve communication relationships. For example, we can
capture the fact that for one application to be installed, another should already exist.

<xs:complexType name="ReferenceDefinition">
<xs:complexContent>
<xs:extension base="ConcreteRelationship”>
<xs:seguence>
<xs:element name="Reference" type="HostingMember" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence> i
<xs:attribute name="DependentDefinition” type="QualifiedName” use="required"/>
<xs:attribute name="SourceDefinition" type="QualifiedName" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

DependentDefinition The name of the dependent concrete object definition to which this
reference relationship applies.

SourceDefinition The name of the source concrete object definition to which this
reference relationship applies.

Reference A list of reference relationship members that reference members of
the guest and host definttions.

The following combinations of concrete type pairs are valid for reference relationships:

Dependent Type Source Type
System System
Resource Resource
Resource Endpoint
Endpoint Resource

3.9 OBJECT AND RELATIONSHIP CONSTRAINTS

We use object and relationship constraints to define the topology of the concrete space and to
constrain the settings of objects when used in particular relationships.

LEE@HAYESPLLC 509-324-9256 90 MS1-1776US

For example within an abstract object definition (A) we may want to identify that implementations of this
abstract definition should contain one instance of another abstract object definition (B). Assuming that
at least one appropriate containment relationship already exists, to do this we would use a relationship
constraint within A that looked as follows:

<RelationshipConstraint name="AContainsB"
relationship="ContainmentDefinition"
myRole="parent”
targetType="B"
minOccurs="1"
maxOccurs="1"/>

The constraint identifies that there should exist a containment relationship in which the implementation
of A plays the role of parent and the type at the other end of the relationship (the member) is of type B.
If we want more control over the configuration of B we can add a constraint on the settings of type B as
follows:

<RelationshipConstraint name="AContainsB"
relationship="ContainmentDefinition”
myRole="parent”
targetType="B"
minOccurs="1"
maxOccurs="1">

<Constraint definition="simpleValueConstraint”
name="BValueConstraint">

<input name="LHS" path="member.name" />
<settingValue name="cperator">=</settingValue>
<settingValue name="RHS">myPort</settingValue>

</Constraint>
</RelationshipConstraint>

In this case, we added a constraint that required the name of the member to equal the string “myPort”.

We can also add constraints to relationships; we call these object constraints. From within a
relationship we constrain the objects that participate in the relationship. For each role in the relationship,
we can identify a object definition and then we can add setting constraints to those object definitions.
From the relationship perspective the cardinality is always minOccurs=1 and maxOccurs=1 so this
does not appear in the constraint declaration.

<ObjectConstraint name="allowedPair”
primaryRole="host"
primaryType="]IS"
secondaryRole="guest"
secondaryType="webApp"/>

Finally, we can nest constraints. This gives us the ability to chain constraints together; the outer
constraint sets the context for the inner constraint. The following is an example of an IIS system that
hosts webapp systems that it then constrains the webApp only containendpoints of a specific type.

In this case, we use a group of object constraints to specify a set of possibilities of which at least one
should be true.

LEE@HAYESPLLC 509-324-9256 91 MS1-1776US

<AbstractSystemDefinition name="liShost™>
<RelationshipConstraint name="WebAppHostConstraint” relationship="hostingRelationship” myRole="host"
targetType="webApp">
<RelationshipConstraint name="WebAppContainsPort" relationship="containmentRelationship" myRole="parent"
targetType="portType">
<ObjectConstraintGroup mode="oneTrue">
<ObjectConstraint name="hasWebPort" primaryRole="member" primaryType="webPort"/>
< ObjectConstraint name="hasSqiPort” primaryRole="member" primaryType="sqlPort"/>
</ObjectConstraintGroup>
</RelationshipConstraint >
</RelationshipConstraint >
</ AbstractSystemDefinition >

The nested constraints form a path that we can evaluate from the outside in. Each constraint on the
path can access the settings of previous instances on the path as well as the current instance. The
evaluation of nested constraints is conducted as if the constraint had been defined within the identified
system.

From the perspective of foo the following two scenarios should be equivalent. In the first foo places a

nested constraint on a contained system bar, in the second, the type bar already contains the
constraint.

Scenario 1:

< AbstractSystemDefinition name="foo">
< RelationshipConstraint name="containsBar" relationship="containment”
myRole="parent" target{Type="bar" minOccurs="1">
< RelationshipConstraint name="containsX" relationship="containment"
myRole="parent" targetType="X" minOccurs="1"/>
</ RelationshipConstraint >
</ AbstractSystemDefinition >

< AbstractSystemDefinition name="bar"/>
Scenario 2:

< AbstractSystemDefinition name="foo">
< RelationshipConstraint name="containsBar" relationship="containment”
myRole="parent” targetType="bar" minOccurs="1"/>
</ AbstractSystemDefinition >

< AbstractSystemDefinition name="bar">
< RelationshipConstraint name="containsX" relationship="containment"

myRole="parent" targetType="X" minOccurs="1"/>
</ AbstractSystemDefinition >

3.9.1 Constraint Model

There are two parts to the constraint model: guards and predicates. We use guards to define the

context in which we execute the predicate. For example within a relationship, we use guards to identify
a particular combination of types for which we want to execute a predicate. Within a object, we use
guards to identify a set of relationship to other objects.

Predicates are then executed when the requirement of their guards have been met. We have two forms
of predicate: setting constraints that validate setting values and group constraints that validate a set of
constraints.

LEE@HAYES PLLC 509-324-9256 92 MS1-1776US

We can nest guards within guards, in which case the inner guard is only checked when the outer guard
is satisfied. This allows us to build paths that support verification of a relationship structure.

The combination of a guard and its predicates can have a cardinality that indicates the number of times
that the guard should match and the predicate evaluate to true.

More formally,

Guard :== ObjectConstraint(objectDefintion, ObjectDefintion ,required)
{ (Guard | predicate) * } |

RelationshipConstraint(Relationshipbefinition,
TargetObject, 1Bound, uBound)
{ (Guard | predicate) * }

A guard is defined as either a ObjectConstraint or a RelationshipConstraint. Object constraints identify
two object definitions that are associated with either end of the relationships. Relationship constraints
identify a relationship definition and a target object definition. An object constraint can be optional or
required while a relationship constraint has a lower bound and an upper bound. This difference in
cardinality reflects the fact that a relationship can only ever. identify two types while a type can
participate in multiple relationships.

Predicate :== SettingscConstraint(rule) | group{ (guard)* }

A predicate is either a settings constraint that contains a rule or a group that contains a set of guards.
The predicate is evaluated in the context of the guard. In the case of a settings constraint, the predicate
can identify settings from the owner of the root guard and the context identified by each nested guard.
Groups are used to identify a set of guards of which at least one should match and evaluate to true.

Examples:

1. RelationshipConstraint(containmentRelationship,webapp,0,1){}
This example shows a guard that evaluates to true whenever there is a containment relationship to a
webapp. This guard can evaluate true at most one time. Further matches will result in the return of an
error to the user.

2. RelationshipConstraint(containmentRelationship,webapp,0,1)

settingsConstraint(webapp.name=2)

LEE@HAYESPLLC 509-324-9256 93 MS1-1776US

This example adds a predicate to the guard. The guard will only evaluate to true when the relationship
and target definitions match and the setting constraint evaluates to true. If the relationship and target
definition match and the setting constraint is not true then an error will be returmed to the user. If the
relationship and target type match and the setting constraint evaluates true more than once, then an
error is retumed to the user.

3. RelationshipConstraint(containmentRelationship,webapp,0,1)
{
RelationshipConstraint(containmentRelationship,vdir,0,1)

}

In this example, we nest a guard within a guard. When the outer guard is true (the type that contains
the constraint also contains a webapp), we then evaluate the inner guard in the context of the outer
guard. That means the inner relationship constraint will be evaluated in the context of a webapp
instance. The inner constraint will return true if the webApp contains zero or one vdirs, if it contains
more than one vdir then the constraint will return an error to the user.

4. oObjectConstraint(webapp,iis, 0,1)

{
RelationshipConstraint(containmentRelationship,systemType,0,1)
{
TypeConstraint(webapp,vdir,0,1)
}
}

The context of the object constraint is the primary object definition (the first object definition). This
means that the relationship constraint will be evaluated in the context of webapp. The relationship
constraint defines two possible contexts, the first is the relationship, which will be the context for object
constraints, and the second is the target object defintion which is the context for relationship
constraints.

5. RelationshipConstraint(containmentRelationship,webapp,0,1)

{
group
{
RelationshipConstraint(containmentRelationship,vdir,0,1)
RelationshipConstraint(containmentRelationship,directory,0,1)
}
}

In this example, we use a group to contain two relationships constraints that will both be evaluated in
the context of the Webapp. The group will raise an error unless at least one of the relationships fire and
return true. In this case, the Webapp should contain either a Vdir or a directory.

3.9.2 Base Constraint

<xs:complexType name="Constraint">
<xs:sequence>
<xs:element name="Description" type="Description” minOccurs="0"/>
<xs:element name="DesignData” type="DesignData" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="name" type="SimpleName"/>

</xs:complexType>

LEE@QHAYES PLLC 509-324-9256 94 MS1-1776US

Attribut / lem nt

Name

DesignData

D scription

Name of this constraint section

Design surface specific information about this constraint

3.9.3 Object Constraint

An object constraint describes a constraint to one or both of the roles of relationship. The constraint has
a name to aid identification of the constraint in the case that it fails, it contains a list of settings
constraints targeted at the types associated with the roles and it may further constrain the instance to

be of a object derived from the definition associated with the role.

<xs:complexType name="ObjectConstraint">

<xs:complexContent>

<xs:extension base="Constraint">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="SettingsConstraint” type="ConstraintMember"/>
<xs:element name="RelationshipConstraint" type="RelationshipConstraint™/>
<xs.element name="RelationshipConstraintGroup" type="RelationshipConstraintGroup"/>

</xs:choice>

<xs:attribute name="PrimaryRole" type="RolesList" use="required"/>
<xs:attribute name="PrimaryObject” type="QualifiedName" use="required"/>
<xs:attribute name="SecondaryRole" type="RolesList" use="optional"/>
<xs:attribute name="SecondaryObject” type="QualifiedName” use="optionai"/>
<xs:attribute name="Required" type="xs:boolean" use="optional"/>

</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element

SettingConstraint

RelationshipConstraint

RelationshipConstraintGroup

PrimaryRole

PrimaryObject

SecondaryRole

Description

A list of setting constraints that apply relative to the Context of this
constraint

A nested relationship constraint. The relationship is evaluated as if it
had been declared on the type associated with the primary role.

A nested relationship group — the relationships in the group are
evaluated as if it had been declared on the type associated with the
primary role. Previous constraints become well-know names for
settings roots.

The name of a role in the relationship that this constraint targets.

The name of the object definition associated with the primary role.

The name of the other role on the relationship that this constraint
targets.

LEE@HAYESPLLC 509-324-9256 95 MS1-1776US

SecondaryObject The name of the object definition associated with the secondary role
on the refationship. This is required if a secondary role is specified.

Required If required is true then the constraint should match the definitions it
has declared for the roles on the relationship. If required is false, then
guard does not have to match the types in use. Required is used to
force a relationship to use a particular combination of types.

3.9.4 Object constraint group

An object constraint group allows sets of object constraints to be grouped together so that they can be
evaluated using at-least-one semantics. The group will return an error unless at least one of object
constraints matches the objects on the relationship and then its contained predicates evaluate to true.
We ignore the required attribute for type constraints if the constraint is a direct member of the group.

<xs:complexType name="ObjectConstraintGroup™>
<xs:complexContent>
<xs:extension base="Constraint">
<xs:sequence>
<xs:element name="ObjectConstraint" type="ObjectConstraint” maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

ObjectConstraint A list of type constraints defined within the group

3.9.5 Relationship Constraint

Relationship constraints are used to constrain the relationships in which a object can participate. A
relationship constraint identifies the relationship definition, optionally the object definition of the instance
at the other end of the relationship and the cardinality of the relationship. The constraint is given a
name so that it can be identified in error messages. The body of the relationship constraint contains
predicates about both the relationship and the instances at the other end of the relationship.

Relationship constraints can be used for a number of purposes: simply using the cardinality without
additional predicates, they can be used to identify relationships that should be provided for an instance
to operate correctly, with predicates they can be used narrow the set of configurations for instances that
this object is willing to interact with.

<xs:complexType name="RelationshipConstraint">
<xs:complexContent>
<xs:extension base="Constraint">
<xs:choice minOccurs="0" maxQOccurs="unbounded">
<xs:element name="SettingsConstraint” type="ConstraintMember"/>
<xs:element name="RelationshipConstraint" type="RelationshipConstraint"/>
<xs:element name="RelationshipConstraintGroup" type="RelationshipConstraintGroup"/>
<xs:element name="0ObjectConstraint" type="ObjectConstraint"/>

LEE@HAYES PLLC 509-324-9256 96 MS1-1776US

<xs:element name="0bjectConstraintGroup" type="ObjectConsiraintGroup"/>
</xs:choice>
<xs:attribute name="Relationship” type="QualifiedName" use="required"/>
<xs:attribute name="MyRole" type="RolesList" use="required"/>
<xs:attribute name="TargetObject" type="QualifiedName" use="optional"/>
<xs:attribute name="MinOccurs" type="MinOccurs" use="optional"/>
<xs:attribute name="MaxQccurs" type="MaxOccurs” use="optional"/>
</xs.extension>
</xs:complexContent>
</xs:.complexType>

Attribute / element

SettingConstraint

RelationshipConstraint

RelationshipConstraintGroup

ObjectConstraint

ObjectConstraintGroup

Name

Relationship

MyRole

TargetObject

MaxOccurs

MinOccurs

Description

Constraints on the values of settings within the relationship or on
objects at the other end of the relationship.

A relationship constraint that is evaluated in the context of the target
object (target object definition should be specified). This is equivalent
to the adding the constraint to the target object.

A relationship group that is evaluated in the context of the target
object (target object should be specified). This is equivalent to the
adding the group to the target object.

A nested object constraint that is evaluated as though it were part of
the relationship defintion identified by the outer constraint.

A nested object constraint group that is evaluated as though it were
part of the relationship definition identified by the outer constraint.

Unique name for the constraint within the scope of the containing
definition

The name of the relationship definition that is being constrained

The name of the role this object instance will plays in this relationship
— this is the name corresponding to the attribute name in the
relationship definition eg client/server, guest/host etc If this is not
provided we infer the role from the types involved in the relationship.

Optional name of the definition of the object that can appear on the
other side of the relationship

The maximum number of times instances of this object can be
identified as a participant in the defined role in the named
relationship. If this is zero, then the type explicitly forbids participation
in the named relationship.

The minimum number of times instances of this object can be
identified as a participant in the defined role in the named relationship

LEE@HAYES PLLC

509-324-9256

97

MS1-1776US

3.9.6 R lationship Constraint group

A relationship constraint group allows sets of relationship constraints to be grouped together so that
they can be evaluated as a predicate with at-least-one semantics. The group will retum an error unless
at least one of the contained relationship constraints match a relationship definition and target object
and its contained predicates retum true. If any of the predicated in the contained constraints retums an
error, then these errors are propagated to the user. The minOccurs cardinality of the contained
relationship constraints is ignored but if the maxOccurs cardinality is violated then an error will be
retumed to the user.

<xs:complexType name="RelationshipConstraintGroup">
<xs:complexContent>
<xs:extension base="Constraint">
<xs:sequence>
<xs:element name="RelationshipConstraint” type="RelationshipConstraint” maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

relationshipConstraint A relationship constraint defined within the group

3.10 OBJECT MANAGER

Object managers are the mechanism by which types and relationships insert custom behavior into the
runtime environment. There are several roles that a manager can support for each type that it
manages: it can participate in the installation of the type, it can provide a CLR representation of the
type, it can be involved in policy decisions about how bindings between types are resolved and it can
provide the implementation for complex constraints and flow.

All object managers roles exposed through the CLR as entry points into strongly named classes.
Object managers are packaged and versioned in the same manner as other types in the sdm; they are
distributed in system distribution units and their version and strong name is derived from the sdm file in
which they are declared.

<xs:complexType name="Manager™>
<xs:sequence>
<xs:element name="Description” type="Description” minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Name" type="SimpleName” use="required"/>
<xs:attribute name="AssemblyName" type="xs:string" use="required"/>
<xs:attribute name="Version" type="FourPartVersionType" use="optional"/>
<xs:attribute name="PublickeyToken" type="PublicKeyTokenType" use="opticnal"/>
<xs:attribute name="Culture” type="xs:string" use="optional"/>
<xs:attribute name="Platform” type="xs:string" use="optional"/>
<xs:aitribute name="SourcePath™ type="xs:string" use="optional"/>
</xs:complexType>

LEE@HAYESPLLC 509-324-9256 98 MS1-1776US

Attribut / lement Description
Name A unique name for this manager in the scope of the containing sdm
file.

Description A text description of the manager

AssemblyName The assembly name

Version The assembly version

PublicKeyToken The public key token for the assembly

Culture The culture of the assembly

Platform The platform of the assembly

SourcePath The path to the assembly within the SDU
3.10.1 Roles

An object manager can support one or more roles for each type that it supports. These roles include:
a) Evaluating constraints for the type or relationship

b) Evaluating flow for the type or relationship

c) Construction/destruction/update support for a type

d) Exposing an object representation for the settings on the type or relationship

e) Performing discovery for the type or relationship.

f) Supporting design surface specific Ul around a type or relationship
3.11 SDM DOCUMENT STRUCTURE

An sdm document provides a strong identity, versioning and localization information for a set of
relationships, objects and managers.

<xs:element name="Sdm">
<xs:complexType>
<xs:sequence>
<xs:element name="Iinformation" type="Information" minOccurs="0"/>
<xs:element name="Import" type="Import" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="DesignData" type="DesignData" minOccurs="0"/>
<xs:element name="SettingDefinitions" type="SettingDefinitions" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="AbstractEndpointDefinition” type="AbstractEndpointDefinition"/>
<xs:element name="AbstractSystemDefinition" type="AbstractSystemDefinition"/>

LEE@HAYESPLLC 509-324-9256 99 MS1-1776US

<xs:element name="AbstractResourceDefinition” type="AbstractResourceDefinition"/>
<xs:element name="AbstractCommunicationDefinition" type="AbstractCommunicationDefinition"/>
<xs:element name="AbstractHostingDefinition” type="AbstractHostingDefinition"/>
<xs:element name="AbstractContainmentDefinition” type="AbstractContainmentDefinition"/>
<xs:element name="AbstractDelegationDefinition" type="AbstractDelegationDefinition"/>
<xs:element name="AbstractReferenceDefinition" type="AbstractReferenceDefinition"/>
<xs:element name="ReferenceDefinition" type="ReferenceDefinition”/>
<xs:element name="HostingDefinition" type="HostingDefinition"/>
<xs:element name="EndpointDefinition" type="EndpointDefinition™>
<xs:element name="ResourceDefinition" type="ResourceDefinition"/>
<xs:element name="ServiceDefinition” type="ServiceDefinition"/>
<xs:element name="ConstraintDefinition” type="ConstraintDefinition"/>
<xs:element name="FlowDefinition" type="FlowDefinition"/>
<xs:element name="Manager” type="Manager"/>
</xs:choice>

</xs:sequence>

<xs:attributeGroup ref="Namespaceldentity"/>

<xs:attribute name="documentLanguage" type="Culture"/>

</xs:complexType>

</xs:element>
3.11.1 Information

The information section of an SDM document contains human readable information to support
identification and management of sdm documents.

<xs:complexType name="Information">
<xs:annotation>
<xs:documentation>Human readable information about the SDM Definition library.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="FriendlyName” type="xs:string"” minOccurs="0"/>
<xs:element name="CompanyName" type="xs:string"” minOccurs="0"/>
<xs:element name="Copyright” type="xs:string" minOccurs="0"/>
<xs:element name="Trademark" type="xs:string” minOccurs="0"/>
<xs:element name="Description" type="Description” minOccurs="0"/>
<xs:element name="Comments" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

Attribute / element Description

FriendlyName

CompanyName

Copyright

Trademark

Description

Comments

LEE@HAYESPLLC 509-324-9256 100 MS1-1776US

3.12 CHANGE REQUEST.

Fig. 17 illustrates an example of a change request. A change request identifies a set of changes to the
SDM runtime. All changes to the runtime are initiated using change requests either through API's that
allow a request to be constructed or in an xml format.

The initial request contains a single group of actions. As the request is processed by the runtime more
structure is added through nested grouping and more actions are added as a resuit of the expansion
and flow process. A change request that has been through this evaluation process and is now ready for
execution against the target machines is called a fully qualified change request. See section 3.13for
more information.

3.12.1 Consistency rules

313

When actions are performed on the SDM instance space we validate that after the actions are
complete all the instances in the SDM instance space are still in a consistent state. By consistent state
we mean that all constraints that apply to the instance are still valid. For example, if we create an
instance of a client that requires a connection to the server, when the sequence of actions used to
create and connect the client is complete, the connection should exist between the client and a server.

The constraints used to evaluate model consistency can be evaluated either on a per action basis or on
the conclusion of a set of actions. We call these two types of consistency operational consistency and
transactional consistency.

If an object will be in an inconsistent after the transaction is complete we allow the user to explicitly
mark that instance as offline. When an instance is offline we do not evaluate constraints that apply to
the instance and the instance will not appear to exist from the perspective of other instances. This may
mean that in turn all those instances should also be marked as offline. Offline is propagated from parent
to child and from host to guest, so marking a system as offline will mark all its in owned instances as
offline and all instances that are hosted on it offline.

MODEL EVALUATION

In this section we describe behavior of the SDM model within the scope of the SDM runtime.

3.13.1 Definition space

The definition space contains all the definitions that are known to the sdm runtime. The steps of Fig. 18
define an example process of loading new definitions into the runtime. This process is also shared by
the compile process that occurs when the design surface validates an sdm document.

3.13.1.1 Load

An sdm document is presented to the runtime either as part of an sdu or as a stand alone document.
We will attempt to load the file from the disk.

LEE@HAYES PLLC 509-324-9256 101 MS1-1776US

Validation error Descripti n

Unknown file We could not find the file in the specified location.

Access denied We were denied access to the file.

3.13.1.2 Schema validation

The first step is to validate that sdm document matches the sdm schema. At this point we will retum
errors for all unknown elements, types that are missing required elements or attributes or types that
contain invalid data.

Validation error Description

Invalid document The document has invalid xml syntax — unclosed nodes, more than one top level
node etc.

Unknown element An unexpected element was found in the sdm document

Unknown Attribute And unknown attributed was found in the sdm document

Invalid value A value failed the schema validation (this does not include ss,;tting value
validation)

Missing attribute A required attributed was missing

Missing element A required element was ‘missing

Invalid attribute combination A combination of attributes or elements was used that was invalid such as:
- minOccurs = maxOccurs | minOccurs = 0 with byValue

We could refum warnings for unknown elements and atfributes and justignore them.

3.13.1.3 Setting value and type resolution

In the type resolution phase we resolve all references to types within the sdm file (anywhere a qualified
name is used in the schema). First we validate that all type references that are within the scope of the
document are valid. These are all type references that do not contain an alias. We then try to resolve all
import statements. If we cannot resolve an import statement we create a namespace load ervor, if we
can resolve and import statement we try to locate the type within the namespace. The namespace
resolution process may generate other errors if we are forced to load the namespace from an sdm file.

LEE@HAYESPLLC 509-324-9256 102 MS1-1776US

Type resolution rr r

Unknown type

Unknown namespace

Version conflict

Culture conflict

Invalid use of type

Invalid setting value

illegal setting value

Descripti n

A type could not be found in tocal or aliased namespace. This will occur for
settings, system, endpoint, resource, relationships, constraints and flow.

A namespace could not be found. The namespace has not been previously
loaded

We could not locate a namespace with matching version information.

We could not locate a namespace with matching culture information.

Use of invalid type in this situation eg. Settings type in a relationship member
etc.

A setting value failed to pass its type’s validation.

A setting value was provided that violated an access modifiers on a setting
declaration or a fixed value declared previously in a type or base type.

3.13.1.4 Path resolution

During the path resolution phase, we try to resolve all paths to members and settings that are defined in
the document. Paths that refer to members or settings with unresolved types will not raise an error.

Path resolution errors

Unknown setting

Unknown member

Cardinality mismatch

Type mismatch

Use mismatch

No value

Description

A setting declaration was not found to match the path

A member declaration was not found to match a name in the path

A path to a setting value in flow and constraint statement included a member or
relationship that had cardinality greater than one.

The declared type of the variable and the type of the resolved setting or member
did not match.

The declared intent of the path — input or output — violated an access modifier on
the setting declaration or a fixed modifier on a value.

A required flow input path referenced a setting that has no default value and is
not exposed so as to allow a user to provide a value.

Path resolution wamings

Description

LEE@HAYES PLLC 509-324-9256

103 MS1-1776US

Runtime path waming

Flow waming

A path that references an isReference member that references an abstract type
may not be verifyable until runtime. (We cannot check that a member exists until
the user creates the concrete type).

Flow wamings — we will raise a waming if a value is provided for a setting that is
also a target of a flow defined at the same time or earlier. We will not raise a
wamning if the flow is defined after the setting value has been provided as long
as the setting is not fixed.

3.13.1.5 Relationship participation

In the type space we check that a type declaration does not violate any of the constraints with respect
to the participation of its members in relationships. To do this we evaluate all type and relationship
constraints that have no associated settings constraints.

Type Space Constraint Description

errors

Relationship type violation A relationship member identifies a particular relationship and two members that
are incompatible based on the types identified by the relationship. Eg a
vdirToVsite hosting relationship is declared between a vdir and a file.

" Relationship use violation A relationship is declared between two members but the use of the relationship -
in this context is not allowed because the members are not accessible. For
example declaring a delegation relationship between twoendpoints that are not
on systemns in a direct containment relationship

Relationship constraint A relationship has been declared between a combination of types that it does

violation not support based on constraints within the relationship. For example a
relationship may be declared between vsites but it only supports certain types
derived from vsite.

Type space constraint Description

wamings

Possible Cardinality When counted up the maxQOccurs for a member results in a set of relationships

mismatch that would violate the cardinality of a relationship constraint.

3.13.1.6 Instance simulation

In the instance simulation we attempt to flow values and evaluate constraints in such a way that we can
identify constraints that we know should fail but not flag constraints that may or may not fail based on
user input. To do this we construct a mode! of the instance space and evaluate flow and constraints
that based on this instance space. If the flow or constraint is know to result in an error then we raise an

error, if it could possibly result in an

LEE@HAYESPLLC 509-324-9256

error then we raise a warming.

104 MS1-1776US

We build an instance space change request using the minOccurs constraint on all byReference
systems. When the minOccurs is 0 we create a single instance and mark it as optional. We then pass
the change request through the same expansion and flow processes as we use for a standard change
request

Simluation warming Description

Optional system Because the system is optional, the runtime could not fully determine all errors
that may result from this configuration.

We then evaluate all flows that have fully defined input values. If the input values are not fixed and
could be changed by a user then we mark the output of the flow as provisional. A provisional input will
chain through any flow operations that consume it. If a flow does not have complete input values and a
user could provide values then we mark all the outputs of the flow as undefined. Flow from optional
systems also results in provisional values.

Flow error Description

Flow input undefined A value was not provided for a required flow input value.

Once we have flowed values we evaluate the constraints based on these values. Constraints that fail
provisioning values will be raised as warnings; a warning will also be raised when a constraint could
not be evaluated due to undefined values.

Setting constraint error Description
Settings input undefined A value was not provided for a required constraint input value.
Settings violate constraint One or more input settings to a constraint resulted in a constraint violation
Setting constraint Description
warnings
Settings could violate A combination of input settings based on defaults can violate the constraint.
constraint
Settings constraint not A constraint could not be evaluated because it depends on settings provided at
evaluated deployment or use time.

3.13.2Instance space

The model evaluation process is initiated by the submission of a declarative change request. This
request will contain a set of create, update or delete operations that target instances within the runtime.

LEE@HAYESPLLC 509-324-9256 105 MS1-1776US

We then pass the request through a series of pipeline stages before enacting the required changes on
the target system as illustrated in Fig. 19.

The following sections outline the responsibilities of each expansion step.

3.13.21 Request submission

In order to initiate a change to the system an operator or process should submit a change request. The
change request contains a set of actions that the operator wants performed over the instances in the
runtime; these actions fall into three groups: create actions, update actions and delete actions.

The request is then treated as an atomic set of actions that should either complete or fail as a group.
This allows the constraint validation process to consider all actions in the request when evaluating
whether the set of actions will result in a valid change to the model.

Change request validation = Description
errors

Invalid document

Unknown element/attribute An unknown element or attributed was found in the xmi schema

3.13.2.1.1 Type resolution

In the type resolution phase we resolve all types and members that are referenced in the change
request. The change request will assume that these are already loaded by the runtime; the runtime will
need to initiate a load/compile action if they do not exist.

3.13.2.1.2 Path resolution

During the path resolution phase we resolve references to existing instances and instances defined by
create actions within the change request.

3.13.2.2 Expansion

Expansion is the process where we take a change request and populate all the remaining actions
required to execute the request: in general these actions are construction and destruction actions for
type and relationship instances. In theory the operator could provide details for all the actions required
to construct or destroy an instance but we don't require this because it would make the change request
authoring process very complex. Instead we try to automate as much of this process: the operator
provides key information about the changes they want by identifying actions on byReference members;
we then fill in the rest of the actions on nested byReference and byValue members and relationships.

LEE@HAYES PLLC 509-324-9256 106 MS1-1776US

3.13.2.2.1 Value member

During the expansion stage we identify all the non-reference type members. We know the cardinality
of these members and we know all the required parameters, so for each member we add create
requests to the change request for those members whose parent is being created. If the change
request contains destruction operations, we add destruction operations for all their contained instances.

3.13.2.22 Reference member expansion (Discovery)

In general reference members require more information to construct than value members. Their
cardinality is often undefined and they can have deployment time settings that require values in order
for the instance to be constructed. So the process of expanding a byReference member can require
more information about the instance than the runtime is in a position to provide. The process by which
we obtain this information is called Discovery.

The process of discovery will populate reference type members as part of a construction or update
action. Only reference members with object managers that support discovery will participate in this
process.

When a new instance is discovered we first check that the instance does not already exist in the SDM
database using instance specific key values. Once we know it is a new instance we then classify the
instance according to the types of the members we are discovering. If the instance does not match a
member or there is an ambiguous match then we leave the member reference blank and mark the
instance as offline and incomplete.

3.13.2.2.3 Relationship Expansion

Once we know all the type instances that will be constructed we create relationship instances that bind
the type instances together. If type instances are being destroyed, we remove all relationship instances
that reference the type instances.

To create the relationships we tum to the member space to identify the configurations of the
relationships that should exist between the instances. Where the type members have cardinality
greater than one we have to infer the topology of the relationships. We will discuss how we do this in
detail in section XX.

3.13.2.3 Flow

During the flow stage we evaluate flow across all the relationship instances. This stage may add update
requests to the change request for instances that were affected by the altered parameter flow.

Flow is evaluated by determining the set of instances that have updated settings as a result of the
change request. For each of these, any outgoing settings flows that depend on the modified settings
are evaluated and the target nodes added to the set of changed instances. The process continues until
the set is empty or the set contains a cycle.

Error/warning Description

Unterminated flow

LEE@HAYES PLLC 509-324-9256 107 MS1-1776US

3.13.24 Duplicate detection
The process of duplicate detection matches expanded instances against instance that already exist in
the sdm data store. For example we will detect if another application has installed a shared file. When
we detect that an instance already exists we can one of several actions depending on the version of the
existing instance:
a) we can fail the install
b) we can reference count the instance
c) we can upgrade the instance
d) we can install side-by-side

3.13.2.5 Constraint evaluation

During the constraint evaluation phase we check that all the constraints in the model will still be valid
after the change request has been processed.

For v1 we may have to visit every node in the graph that has a constraint as determining the scope of constraints
may be difficult (we may be able to tag the member space in such a way that we can prune the instance space)

3.13.26 Request Ordering '

We now have a complete list of actions, so we can use the relationships between systems to determine
a valid change ordering.

3.13.2.7 Execution

We distribute subsets of the orders set of actions that are machine specific. We should support cross
machine synchronization of these machine specific sets.

3.13.2.8 Request return

Change is carried out by breaking the change requests down into distributable parts based on the
hosting relationships that are affected. One all the parts are completed (or failed) the results are
collated in the runtime and a summary returned to the user.

3.13.3 Expansion in depth

In this section we go into detail on the expansion process for types and relationships.

LEE@HAYES PLLC 509-324:9256 108 MS1-1776US

3.13.3.1 Reference member expansion (discovery)

In the same way that the hosting relationship is responsible for constructing new instances of a type,
we also use the hosting relationship to discover existing type instances. The hosting relationship is
uniquely placed to do this as it alone is aware of the way a type instance is represented on a host.

When a reference member is marked for discovery we check to see if the hosting relationship supports
discovery. If it does we pass the host instance to the relationship and ask it to return construction
actions for the guest instances that it finds on the host.

We use verification to discover that instances no longer exist. This again uses the hosting relationship
to verify the existence of a guest on a host. If the guest no longer exists then the hosting relationship
adds a destruction action to the change request.

3.13.3.2 Non reference member expansion
The runtime handles all non-reference member expansions by simply adding construction or
destruction actions for each non-reference member of a type that has already been identified for
construction or destruction within the change request.

3.13.3.3 Communication relationship expansion
If the operator has not specified an instance of a communication relationship where a communication

relationship member exists between two type members, then we expand the communication
relationship by assuming a fully connected mesh between the members

The connectivity constraint may be loosened if there are important topologies that we cannot capture, but
loosening it complicates the deployment process. For example, if we allowed looser topologies we could provide a
way to create and manage these wires, do path checking for any changes, and expose the topology to the
operator creating the deployment.

What does this mean? If two members are connected in the member space, then all the instances of
each member should be able to see each other. Given the following two members the instance space
topologies which are constrained by the cardinality of the members, as shown in Fig. 20. Two example
members are shown at 1800. At 1802, a simple point to point relationship between a maximum of two
instances is illustrated. At 1804, a fan out of connections is illustrated. An example may be a client that
can load balance requests across a set of servers. At 1806, afanin of connections is illustrated. An
example may be a group of clients sharing a single server. At 1808, a combination of the above cases
where a set of clients shares a set of servers is illustrated.

When we construct communication links, delegate endpoints become transparent so that we end up
with connections that match all the communication relationships that would exist if the delegate
endpoints were removed. Fig. 21 illustrates two structures 1902 and 1904 that are equivalent as far as
the connections between instances of A, B and C are concerned.

LEE@HAYES PLLC ~ 509:324-9256 109 MS1-1776US

3.13.3.4 Hosting relationship expansion

Where hosting relationships are ambiguous we require the either the operator or the manager of the
hosting relationship to determine the correct topology.

If the hosting relationship supports expansion, then we pass the set of hosts and the guest to the
relationship manger and ask the manager to return the correct construction action. If the manager does
not support expansion then we retum the change request to the operator so that they can provide more
information.

3.13.3.5 Reference relationship expansion

3.13.3.6 Containment relationship expansion

Containment relationships are never ambiguous so the runtime can always add the appropriate
construction action to the change request.

3.13.3.7 Delegation relationship expansion
For expansion, delegation relationships follow the same rules as communication relationships.

3.13.4Flow
3.13.5 Execution

3.14 SDM INSTANCE SPACE

The follow section defines an object mode! for the instance space of the sdm runtime. The instance
space is used to track changes to the configuration of the system that are modeled by the sdm.

Fig. 22 illustrates an example UML diagram that provides an overview of the instance space. The
boxes 2002, 2004, 2006, and 2008 indicate types that defined in other sections of this document.

The instance space is structured around versioned changes initiated by change requests. Each
instance can have a linear series of versions that represent atomic changes that were made to the
running instance. Future versions can also exist in the runtime before they have been propagated to
the running system.

For this version of the SDM model we only allow linear changes for a given instance. in the future we
may allow version branches and introduce a version resolution model. This would allow more than one
change to be outstanding against a particular instance.

Since we do allow linear versioning, we can load a series of change requests that build on previous

changes. This supports prior validation of a sequence of actions that may be taken during a process
such as a rolling upgrade.

LEE@HAYESPLLC 509-324:9256 110 MS1-1776US

3.14.1 SDM Instance

All instances derive from sdm instance. They share elements that define values for the settings schema
and list of members that match the members on the instance’s definition. They also share a set of
attributes that define a unique identifier for the instance, a version number for the instance, a name for
the instance and flag that indicates whether this version represents the running state of the system.

<xs:complexType name="sdminstance™>

<xs:sequence>

<xs:element name="settingValues" type="settingValues" minOccurs="0"/>
<xs:element name="member" type="member” minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="id" type="instancelD" use="required"/>
<xs:attribute name="version" type="xs:int" use="required"/>
<xs-attribute name="isCurrent” type="xs:boolean" use="required"/>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs-attribute name="incomplete” type="xs:boolean" use="required"/>

</xs:complexType>

Attribute / element

settingsValues

member

version

isCurrent

name

Description

A list of setting values that defines the desired state of the modeled
system object. This list includes all the values defined by, the
developer on the definition or the member, the operator when
deploying the instance or via flow from related instances.

This is a list of members that represent the members on the
definition. Each member identifies the instances assigned to the
member. .

An identifier for the instance that is unique at global scope (to support
distributed runtimes)

The version number increments linearty with changes to the instance.

This is a flag that indicates whether this version represents the
running state of the system. There can exist latter versions that
represent updates that have not been propagated to the running
system.

A unique name for the instance within the scope of its containing
member (may not be unique from the perspective of delegated
members)

3.14.2 Member

A member is used to associate the member of an instance which a set of referenced instances. The
members of an instance are defined by the instance’s definition. The referenced instances are the

LEE@HAYES PLLC

509-324-9256 111 MS1-1776US

instances that have created for the members or the instances to which the members are delegated. A
member may represent an array in which case there may be more than one referenced instance.

<xs:complexType name="member">
<xs:sequence>
<xs:element name="instance” type="instanceRef" minOccurs="0" maxOccurs="unbounded”/>
</xs.sequence>
<xs:attribute name="memberDeclaration” type="qualifiedName” use="optional"/>
<xs:attribute name="name” type="xs:string” use="required’/>
</xs:complexType>

Attribute / element Description

instance An instance referenced by this member

memberDeclaration The declaration of this member on the associated definition

name The name of the associated member on the definition
3.14.3 Change

A change represents a change to the instance state. It associates a change request with the set of
affected instances. It also identifies he status of the change (see section XXX) and the change
response if the change has been executed.

<xs:complexType name="change™>
<xs:sequence>
<xs-element name="instance” type="instanceVersionRef" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="changelD" use="required"/>
<xs:attribute name="status" type="changeStatus” use="required"/>
<xs:attribute name="changeRequest" type="qualifiedName" use="optional"/>
<xs:attribute name="changeResponse" type="qualifiedName” use="required"/>
</xs:complexType>

Attribute / element Description

instance A list of instance versions that we created as a result of the
associated change request

id A unique identifier for this change (at least unique to the runtime)

status An enumeration identifying the current status of this change

changeRequest Alink to the change request that was used to create this change

changeResponse A link to the resuits retum from the execution of the change

LEE@HAYESPLLC ~ 509-324:9256 112 MS1-1776US

3.14.3.1 Change Status
A change request can be in one of the following states:
e notStarted - indicating that no execution has been attempted against a change request
o inProgress — indicating that it is currently being executed.
o complete —indicating that the change request was completed successfully
o failed — indicating that the change request has failed and the change is in an incomplete state

e rolledBack — indicateding that a failed change request has been successfully rolled back.

<xs:simpleType name="changeStatus™>
<xs:restriction base="xs:string">
<xs:enumeration value="notStarted"/>
<xs-enumeration value="inProgress"/>
<xs:enumeration value="completed"/>
<xs:enumeration value="failed"/>
<xs:enumeration value="rolliedBack"/>
</xs:restriction>
</xs:simpleType>

3.14.4 Concrete object instance

A concrete object instance represents an instance the concrete type identified by the type attribute.
Since there can be real world representation for the instance we need to track whether the instance is
in sync with its real world counterpart. We also want to know whether the instance will be online as a
result of this change. An online instance should be valid with respect to all its constraints. An offiine
instance is does not appear visible to the other participants of the communication relationships that it
participates in. If the instance is incomplete then further change requests are required before the
instance can be taken online

<xs:complexType name="0ObjectIinstance">
<xs:complexContent>
<xs:extension base="sdminstance">
<xs-attribute name="inSync" type="xs:boolean” use="required"/>
<xs:attribute name="online" type="xs:boolean” use="required"/>
<xs:attribute name="type" type="qualifiedName” use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

inSync This indicates whether the settings on the instance match those on its
real world counterpart.

online This indicates whether the real world counterpart shoutd be
considered online and active. An instance cannot be put in the online
state if any constraints are not satisfies. An offline instances will not
be visible to other participants in the communication relationships that

LEE@HAYES PLLC 509-324-9256 113 MS1-1776US

reference it. (flow will not be evaluated?)

incomplete This flag indicates that required information is missing from this
version of an instance. This situation may arise as a result of a
discovery process that could not identify all information required by
instance or as a result of a change request that did not supply all
required information.

type A reference to the type of the instance.

3.14.5 Relationship Instances

A relationship instance represents an instance of the identified relationship type. Since relationships
have no direct real-world representation we do need to keep information about whether the relationship
is in sync or online. Also since relationships are relatively simple we do not expect them to be
incomplete, though they can fail their constraints.

<xs:complexType name="relationshiplnstance">
<xs:complexContent>
<xs:extension base="sdmlnstance">
<xs-attribute name="relationship" type="qualifiedName” use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

. Attribute / element Description

relationship The relationship type associated with this instance.

3.1451 Containment Instance

This represents an instance of a containment relationship.

<xs:complexType name="containmentinstance">
<xs:complexContent>
<xs:extension base="relationshiplnstance">
<xs:attribute name="parentinstance" type="instancelD" use="required"/>
<xs:attribute name="childInstance" type="instancelD" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description
parentinstance Identifies the parent instance that participates in the relationship.
childinstance \dentifies the child instance that participates in the relationship.

LEE@HAYES PLLC 509-324-9256 114 MS1-1776US

31452 Communication Instance
This represents an instance of a communication relationship.

<xs.complexType name="communicationlnstance">

<xs:complexContent>
<xs-extension base="relationshiplnstance”>
<xs:attribute name="clientinstance” type="instancelD" use="required"/>
<xs:attribute name="serverinstance" type="instancelD" use="required"/>

</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

clientinstance Identifies the client instance that participates in the relationship.

serverlnstance |dentifies the server instance that participates in the relationship.

3.14.5.3 Delegation Instance
This represents an instance of a delegation relationship.

<xs:complexType name="delegationlnstance™>
<xs:complexContent>
<xs:extension base="relationshiplnstance">
<xs:attribute name="proxyinstance” type="instancelD" use="required"/>
<xs:attribute name="delegatelnstance” type="instancelD" use="required"/>
</xs:extension> .
</xs:complexContent> .
</xs:complexType>

Attribute / element Description
proxylnstance Identifies the proxy instance that participates in the relationship.
delegatelnstance Identifies the delegate instance that participates in the relationship.

3.14.5.4 Hosting Instance
This represents an instance of a hosting relationship.

<xs:complexType name="hostinglnstance">
<xs:complexContent>
<xs:extension base="relationshipinstance">
<xs:attribute name="guestinstance” type="instancelD" use="required"/>
<xs:attribute name="hostInstance" type="instancelD" use="required"/>
</xs:.extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

LEE@HAYESPLLC 509-324-9256 115

MS1-1776US

guestinstance \dentifies the guest instance that participates in the relationship.

hostinstance \dentifies the host instance that participates in the relationship.

3.1455 Reference Instance

This represents an instance of a reference relationship.

<xs:complexType name="referencelnstance">
<xs:complexContent>
<xs-extension base="relationshiplnstance">
<xs:attribute name="sourcelnstance" type="instancelD" use="required"/>
<xs:attribute name="dependentinstance” type="instancelD" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Attribute / element Description

sourcelnstances Identifies the source instance that participates in the relationship.

dependentinstance Identifies the dependent instance that participates in the relationship.
3.14.6 Instances

The Instances group represents the set of instance elements that can existin an sdminstance file.

<xs:group name="instances">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="Systeminstance” type="concreteTypelnstance"l>
<xs:element name="portInstance” type="concreteType|nstance”/>
<xs-element name="resourcelnstance” type="concreteTypeInstance"/>
<xs-element name="member” type="member"/>
<xs:-element name="containmentinstance” type="containmentlnstance"/>
<xs:element name="communicationinstance” type="communication|nstance"l>
<xs:element name="hostingInstance" type="hostinglnstance"/>
<xs:element name="delegationinstance” type="de|egation|nstance“/>
<xs-element name="referencelinstance” type="referencelnstance"/>
<xs:element name="placementinstance” type="placementlnstance"/>
</xs.choice>
</xs:group>

3.14.7 Instance References

3.14.71 Instance Ref

Instance ref is a simple reference to an instance. Will default to the isCurrent instance unless the
reference is made in the context of a change request and the instance is affected by the change
request.

<xs:complexType name="instanceRef">
<xs:attribute name="instancelD" type="instancelD" use="required"/>
</xs:complexType>

LEE@HAYESPLLC 509-324-9256 116 MS1-1776US

314.7.2 Instance Version Ref

Instance version ref identifies a particular version of an instance.

<xs.complexType name="instanceVersionRef">
<xs:attribute name="instancelD" type="instancelD" use="required"/>
<xs:attribute name="version" type="xs.int" use="required"/>
</xs:complexType>

3.15 DEPLOYMENT UNIT STRUCTURE
Requirements
« Contains all the bits requires to install a set of SDM types
o Can be signed and versioned -
e Easily constructed / packaged / shipped
e Can refer to other SDUs either by reference or by inclusion

o The deployment section of the SDM type definition refers directly to files in the SDU

3.16 LOCALIZATION

We need to decide what parts of the SDM model support localization and how we support localization
through design and deployment of systems.

First approach:

We leave localization completely up to individual types and types to manage. Localization is implicit
through constraints. Localization is not a first type citizen. What this means:

a) SDUs can contain the implementation of a specific version of a type: there is one
implementation of a specific version. This means that there cannot be implementations that
differ based on localization alone. So each implementation should support a range of locales
or the implementations should be of different types (using versioning for this purpose would be
a crimel!)

b) Localization is then either achieved by using resources as mixins to support specific versions
or through using a set of types that identify implementations that support different versions.

c) Clients cannot differentiate/require localized versions of servers.
S cond approach:

LEE@HAYES PLLC 509-324-9256 117 MS1-1776US

Localization is a first type citizen of identity along with name and version. This means that localization
should be taken into account anywhere where a reference is made to a type.

a) Clients can now differentiate localized versions of servers on any of the containment,
hosting or communication relationships.

b) The deployment engine should be aware of localization and allow the operator to select
between localized versions of types.

c) Either SDU's are identified by name, version and locale(s) or an SDU can contain mutiple
implementations that differ only based on their locale(s) (the firstimplies a finer grained
packaging of SDUs as non localized code should be placed in a separate sdu, the second
implies that we can have multiple sdus with the same name,,,)

The second approach has the potential to get very complicated from a design/ui perspective if locale is
widely used as a constraint. For example if endpoints are localized or if hosts localize their guests then
finding a connection/placement just got a lot more complex. If the second approach is used with b) from
the first approach as the suggested mechanism then the complexity may be easier to manage but
somebody has to identify, package and ship the localized resources.

3.17 VERSIONING AND CHANGE MANAGEMENT

3.17.1 General comments

e We want to be able to version systems in place — ie apply a gfe to sql without changing the -
instance identity. This implies changing the type of the instance.

e We want to allow versioning policy to control allowed version changes — eg a system type
designer can choose how strict the versioning policy for the members of the system, or an
operator might choose to unilaterally upgrade a member’s version for security reasons.

e« We want to limit the propagation of versioning changes — eg if we change the type of a
member we do not want to have to change the type of the system thus propagating type
changes to the root.

e Breaking changes will be indicated by changes in the first 2 parts of the version number, non
breaking changes will be indicated by changes in the second two parts of the version number.

LEE@HAYES PLLC 509-324-9256 118 MS1-1776US

(000105} Example Computer Environment

Fig. 23 illustrates a general computer environment 2300, which can be used to
implement the techniques described herein. The computer environment 2300 is only one
example of a computing environment and is not intended to suggest any limitation as to
the scope of use or functionality of the computer and network architectures. Neither
should the computer environment 2300 be interpreted as having any dependency or
requirement relating to any one or combination of components illustrated in the
exemplary computer environment 2300.

[000106] Computer environment 2300 includes a general-purpose computing device
in the form of a computer 2302. Computer 2302 can be, for example, a computing device
102 of Fig. 1, or implement development system 202 or be a controller 206 of Fig. 2, or
be a target device 212 of Fig. 2, or be a controller 620 or target 622 of Fig. 6. The
components of computer 2302 can include, but are not limited to, one or more processors
or processing units 2304, a system memory 2306, and a system bus 2308 that couples
various system components including the processor 2304 to the system memory 2306.

[000107] The system bus 2308 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a peripheral bus, an accelerated
graphics port, and a processor or local bus using any of a variety of bus architectures. By
way of example, such architectures can include an Industry Standard Architecture (ISA)
bus, a Micro Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video
Electronics Standards Association (VESA) local bus, and a Peripheral Component

Interconnects (PCI) bus also known as a Mezzanine bus.

lee@hayes plic 509-324-9256 119 MS1-1776US

[000108] Computer 2302 typically includes a variety of computer readable media.
Such media can be any available media that is accessible by computer 2302 and includes
both volatile and non-volatile media, removable and non-removable media.

[000109] The system memory 2306 includes computer readable media in the form
of volatile memory, such as random access memory (RAM) 2310, and/or non-volatile
memory, such as read only memory (ROM) 2312. A basic input/output system (BIOS)
2314, containing the basic routines that help to transfer information between elements
within computer 2302, such as during start-up, is stored in ROM 2312. RAM 2310
typically contains data and/or program modules that are immediately accessible to and/or.
presently operated on by the processing unit 2304.

[000110] Computer 2302 may also include other removable/non-removable,
volatile/non-volatile computer storage media. By way of example, Fig. 23 illustrates a
hard disk drive 2316 for reading from and writing to a non-removable, non-volatile
magnetic media (not shown), a magnetic disk drive 2318 for reading from and writing to
a removable, non-volatile magnetic disk 2320 (e.g., a “floppy disk”), and an optical disk
drive 2322 for reading from and/or writing to a removable, non-volatile optical disk 2324
such as a CD-ROM, DVD-ROM, or other optical media. The hard disk drive 2316,
magnetic disk drive 2318, and optical disk drive 2322 are each connected to the system
bus 2308 by one or more data media interfaces 2326. Alternatively, the hard disk drive
23}6, magnetic disk drive 2318, and optical disk drive 2322 can be connected to the
system bus 2308 by one or more interfaces (not shown).

[000111] The disk drives and their associated computer-readable media provide

non-volatile storage of computer readable instructions, data structures, program modules,

lee@hayes plic ~ 509-324-9256 120 MS1-1776US

and other data for computer 2302. Although the example illustrates a hard disk 2316, a
removable magnetic disk 2320, and a removable optical disk 2324, it is to be appreciated
that other types of computer readable media which can store data that is accessible by a
computer, such as magnetic cassettes or other magnetic storage devices, flash memory
cards, CD-ROM, digital versatile disks (DVD) or other optical storage, random access
memories (RAM), read only memories (ROM), electrically erasable programmable read-
only memory (EEPROM), and the like, can also be utilized to implement the exemplary
computing system and environment. °

[000112] Any number of program modules can be stored on the hard disk 2316,
magnetic disk 2320, optical disk 2324, ROM 2312, and/or RAM 2310, including by way
of example, an operating system 2326, one or more application programs 2328, other
program modules 2330, and program data 2332. Each of such operating system 2326,
one or more application programs 2328, other program modules 2330, and program data
2332 (or some combination thereof) may implement all or part of the resident
components that support the distributed file system.

[000113] A user can enter commands and information into computer 2302 via input
devices such as a keyboard 2334 and a pointing device 2336 (e.g., a “mouse”). Other
input devices 2338 (not shown specifically) may include a microphone, joystick, game
pad, satellite dish, serial port, scanner, and/or the like. These and other input devices are
connected to the processing unit 2304 via input/output interfaces 2340 that are coupled to
the system bus 2308, but may be connected by other interface and bus structures, such as

a parallel port, game port, or a universal serial bus (USB).

lee@hayes pllc ~ 509-324-9256 121 MS1-1776US

[000114] A monitor 2342 or other type of display device can also be connected to
the system bus 2308 via an interface, such as a video adapter 2344. In addition to the
monitor 2342, other output peripheral devices can include components such as speakers
(not shown) and a printer 2346 which can be connected to computer 2302 via the
input/output interfaces 2340.

[000115] Computer 2302 can operate in a networked environment using logical
connections to one or more remote computers, such as a remote computing device 2348.
By way of example, the remote computing device 2348 can be a personal computer,
portable computer, a server, a router, a network computer, a peer device or other common
network node, and the like. The remote computing device 2348 is illustrated as a portable
computer that can include many or all of the elements and features described herein
relative to computer 2302.

[000116] Logical connections between computer 2302 and the remote computer
2348 are depicted as a local area network (LAN) 2350 and a general wide area network
(WAN) 2352. Such networking environments are commonplace in offices, enterprise-
wide computer networks, intranets, and the Internet.

[000117] When implemented in a LAN networking environment, the computer 2302
is connected to a local network 2350 via a network interface or adapter 2354. When
implemented in a WAN networking environment, the computer 2302 typically includes a
modem 2356 or other means for establishing communications over the wide network
2352. The modem 2356, which can be internal or external to computer 2302, can be
cormected to the system bus 2308 via the input/output interfaces 2340 or other

appropriate mechanisms. It is to be appreciated that the illustrated network connections

lee@hayes plic 509-324+9256 122 MS1-1776US

are exemplary and that other means of establishing communication link(s) between the
computers 2302 and 2348 can be employed.

[000118] In a networked environment, such as that illustrated with computing
environment 2300, program modules depicted relative to the computer 2302, or portions
thereof, may be stored in a remote memory storage device. By way of example, remote
application programs 7358 reside on a memory device of remote computer 2348. For
purposes of illustration, application programs and other executable program components
such as the operating system are illustrated herein as discrete blocks, although it is
recognized that such programs and components reside at various times in different storage
components of the computing device 2302, and are executed by the data processor(s) of
the computer.

[000119] Various modules and techniques may be described herein in the general
context of computer-executable instructions, such as program modules, executed by one
or more computers or other devices. Generally, program modules include routines,
programs, objects, components, data structures, etc. that perform particular tasks or
implement particular abstract data types. Typically, the functionality of the program
modules may be combined or distributed as desired in various embodiments.

[000120] An implementation of these modules and techniques may be stored on or
transmitted across some form of computer readable media. Computer readable media can
be any available media that can be accessed by a computer. By way of example, and not
limitation, computer readable media may comprise ‘“computer storage media” and

“communications media.”

lee@hayes plic ~ 509-324:9256 123 MS1-1776US

[000121] “Computer storage media” includes volatile and non-volatile, removable
and non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program modules, or
other data. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium which can be used to store the
desired information and which can be accessed by a computer.

[000122] «“Communication media” typically embodies computer readable
instructions, data structures, program modules, or other data in a modulated data signal,
such as carrier wave or other transport mechanism. Communication media also includes
any information delivery media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication media
includes wired media such as a wired network or direct-wired connection, and wireless
media such as acoustic, RF, infrared, and other wireless media. Combinations of any of
the above are also included within the scope of computer readable media.

[000123] Alternatively, portions of the framework may be implemented in hardware
or a combination of hardware, software, and/or firmware. For example, one or more
application specific integrated circuits (ASICs) or programmable logic devices (PLDs)

could be designed or programmed to implement one or more portions of the framework.

lee@hayes plic 509:324-9256 124 MS1-1776US

[000124] Conclusion

Although the invention has been described in language specific to structural
features and/or methodological acts, it is to be understood that the invention defined in
the exemplary appended claims is not limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as exemplary forms of implementing
the claimed invention. Moreover, these claims are exemplary in terms of scope and
subject matter. Many other combinations and sub-combinations of the features described

herein may later be claimed in patent applications claiming priority to this application.

lee@hayes plic 509-324+9256 125 MS1-1776US

	2003-10-24 Specification

